forked from yenchenlin/nerf-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
223fe62
commit ec26d1c
Showing
1 changed file
with
95 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import os | ||
import torch | ||
import numpy as np | ||
import imageio | ||
import json | ||
import torch.nn.functional as F | ||
import cv2 | ||
|
||
|
||
trans_t = lambda t : torch.Tensor([ | ||
[1,0,0,0], | ||
[0,1,0,0], | ||
[0,0,1,t], | ||
[0,0,0,1]]).float() | ||
|
||
rot_phi = lambda phi : torch.Tensor([ | ||
[1,0,0,0], | ||
[0,np.cos(phi),-np.sin(phi),0], | ||
[0,np.sin(phi), np.cos(phi),0], | ||
[0,0,0,1]]).float() | ||
|
||
rot_theta = lambda th : torch.Tensor([ | ||
[np.cos(th),0,-np.sin(th),0], | ||
[0,1,0,0], | ||
[np.sin(th),0, np.cos(th),0], | ||
[0,0,0,1]]).float() | ||
|
||
|
||
def pose_spherical(theta, phi, radius): | ||
c2w = trans_t(radius) | ||
c2w = rot_phi(phi/180.*np.pi) @ c2w | ||
c2w = rot_theta(theta/180.*np.pi) @ c2w | ||
c2w = torch.Tensor(np.array([[-1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]])) @ c2w | ||
return c2w | ||
|
||
|
||
def load_LINEMOD_data(basedir, half_res=False, testskip=1): | ||
splits = ['train', 'val', 'test'] | ||
metas = {} | ||
for s in splits: | ||
with open(os.path.join(basedir, 'transforms_{}.json'.format(s)), 'r') as fp: | ||
metas[s] = json.load(fp) | ||
|
||
all_imgs = [] | ||
all_poses = [] | ||
counts = [0] | ||
for s in splits: | ||
meta = metas[s] | ||
imgs = [] | ||
poses = [] | ||
if s=='train' or testskip==0: | ||
skip = 1 | ||
else: | ||
skip = testskip | ||
|
||
for idx_test, frame in enumerate(meta['frames'][::skip]): | ||
fname = frame['file_path'] | ||
if s == 'test': | ||
print(f"{idx_test}th test frame: {fname}") | ||
imgs.append(imageio.imread(fname)) | ||
poses.append(np.array(frame['transform_matrix'])) | ||
imgs = (np.array(imgs) / 255.).astype(np.float32) # keep all 4 channels (RGBA) | ||
poses = np.array(poses).astype(np.float32) | ||
counts.append(counts[-1] + imgs.shape[0]) | ||
all_imgs.append(imgs) | ||
all_poses.append(poses) | ||
|
||
i_split = [np.arange(counts[i], counts[i+1]) for i in range(3)] | ||
|
||
imgs = np.concatenate(all_imgs, 0) | ||
poses = np.concatenate(all_poses, 0) | ||
|
||
H, W = imgs[0].shape[:2] | ||
focal = float(meta['frames'][0]['intrinsic_matrix'][0][0]) | ||
K = meta['frames'][0]['intrinsic_matrix'] | ||
print(f"Focal: {focal}") | ||
|
||
render_poses = torch.stack([pose_spherical(angle, -30.0, 4.0) for angle in np.linspace(-180,180,40+1)[:-1]], 0) | ||
|
||
if half_res: | ||
H = H//2 | ||
W = W//2 | ||
focal = focal/2. | ||
|
||
imgs_half_res = np.zeros((imgs.shape[0], H, W, 3)) | ||
for i, img in enumerate(imgs): | ||
imgs_half_res[i] = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA) | ||
imgs = imgs_half_res | ||
# imgs = tf.image.resize_area(imgs, [400, 400]).numpy() | ||
|
||
near = np.floor(min(metas['train']['near'], metas['test']['near'])) | ||
far = np.ceil(max(metas['train']['far'], metas['test']['far'])) | ||
return imgs, poses, render_poses, [H, W, focal], K, i_split, near, far | ||
|
||
|