#####ai
####maze search algo
####pattern recognition
####fuzzy theory
####genetic algorithm
####artificial life
####ml
###supervised learning
##ensemble
#random forest
#xgboost
##regression(prediction)
#linear regression
##classification
#logistic regression
#decision tree
#SVM
#KNN
#naive bayesian algorithm
###unsupervised learning
##cluster
#K MEANS
###reinforcement learing
####DL
##CNN
##note solving systems of linear equations in Python Central Limit Theorem Basic concepts of statistics (mean, mean, sample mean, variance, standard deviation, etc.) Pandas and numpy basic settings lib explain Overall Task project (example: create array, create data frame, add lines, add columns, compute from file, write to file, rename columns, delete columns, remove lines, subset, convert)
Library Operations project (example: Creating a histogram, creating a histogram of different colors, adding signatures, adding legends, creating legends) python intro : data types , functions, loops things
https://en.wikipedia.org/wiki/Data_preprocessing
remove outlier
fill nan to average or linear or mode value
use chatgpt
indepandent var : dependent var [ex)rock size length weight color : gold or not] more ez explain -> :
x train : y train
x test : y test
https://www.coursera.org/learn/machine-learning-data-analysis
Its written in russian. hope u can read. I learned from duolingo.
https://en.wikipedia.org/wiki/XOR_gate
https://towardsdatascience.com/how-neural-networks-solve-the-xor-problem-59763136bdd7
https://www.youtube.com/watch?v=kNPGXgzxoHw
#install cuda enabled gpu, tensorflow.org/install/gpu
pip install tensorflow-gpu
test of it
import tensorflow as tf print("TensorFlow version:", tf.version)