-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbreg_harm.py
92 lines (77 loc) · 3.3 KB
/
symbreg_harm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# This file is part of EAP.
#
# EAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# EAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with EAP. If not, see <http://www.gnu.org/licenses/>.
import operator
import math
import random
import numpy
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
from deap import gp
# Define new functions
def protectedDiv(left, right):
try:
return left / right
except ZeroDivisionError:
return 1
pset = gp.PrimitiveSet("MAIN", 1)
pset.addPrimitive(operator.add, 2)
pset.addPrimitive(operator.sub, 2)
pset.addPrimitive(operator.mul, 2)
pset.addPrimitive(protectedDiv, 2)
pset.addPrimitive(operator.neg, 1)
pset.addPrimitive(math.cos, 1)
pset.addPrimitive(math.sin, 1)
pset.addEphemeralConstant("rand101", lambda: random.randint(-1,1))
pset.renameArguments(ARG0='x')
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2)
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("compile", gp.compile, pset=pset)
def evalSymbReg(individual, points):
# Transform the tree expression in a callable function
func = toolbox.compile(expr=individual)
# Evaluate the mean squared error between the expression
# and the real function : x**4 + x**3 + x**2 + x
sqerrors = ((func(x) - x**4 - x**3 - x**2 - x)**2 for x in points)
return math.fsum(sqerrors) / len(points),
toolbox.register("evaluate", evalSymbReg, points=[x/10. for x in range(-10,10)])
toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("mate", gp.cxOnePoint)
toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)
toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
def main():
random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
mstats.register("avg", numpy.mean)
mstats.register("std", numpy.std)
mstats.register("min", numpy.min)
mstats.register("max", numpy.max)
pop, log = gp.harm(pop, toolbox, 0.5, 0.1, 40, alpha=0.05, beta=10, gamma=0.25, rho=0.9, stats=mstats,
halloffame=hof, verbose=True)
# print log
return pop, log, hof
if __name__ == "__main__":
main()