-
Notifications
You must be signed in to change notification settings - Fork 95
/
post.py
executable file
·130 lines (104 loc) · 4.06 KB
/
post.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python3
"""Post-processing the output of neural network
Usage:
post.py [options] <input-dir> <output-dir>
post.py ( -h | --help )
Examples:
post.py logs/logname/npz/000336000 result/logname
Arguments:
input-dir Directory that stores the npz
output-dir Output directory
Options:
-h --help Show this screen.
--plot Generate images besides npz files
--thresholds=<thresholds> A comma-separated list for thresholding
[default: 0.006,0.010,0.015]
"""
import glob
import math
import os
import os.path as osp
import sys
import cv2
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from docopt import docopt
from lcnn.postprocess import postprocess
from lcnn.utils import parmap
PLTOPTS = {"color": "#33FFFF", "s": 1.2, "edgecolors": "none", "zorder": 5}
cmap = plt.get_cmap("jet")
norm = mpl.colors.Normalize(vmin=0.92, vmax=1.02)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
sm.set_array([])
def c(x):
return sm.to_rgba(x)
def imshow(im):
plt.close()
sizes = im.shape
height = float(sizes[0])
width = float(sizes[1])
fig = plt.figure()
fig.set_size_inches(width / height, 1, forward=False)
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
ax.set_axis_off()
fig.add_axes(ax)
plt.xlim([-0.5, sizes[1] - 0.5])
plt.ylim([sizes[0] - 0.5, -0.5])
plt.imshow(im)
def main():
args = docopt(__doc__)
files = sorted(glob.glob(osp.join(args["<input-dir>"], "*.npz")))
inames = sorted(glob.glob("data/wireframe/valid-images/*.jpg"))
gts = sorted(glob.glob("data/wireframe/valid/*.npz"))
prefix = args["<output-dir>"]
inputs = list(zip(files, inames, gts))
thresholds = list(map(float, args["--thresholds"].split(",")))
def handle(allname):
fname, iname, gtname = allname
print("Processing", fname)
im = cv2.imread(iname)
with np.load(fname) as f:
lines = f["lines"]
scores = f["score"]
with np.load(gtname) as f:
gtlines = f["lpos"][:, :, :2]
gtlines[:, :, 0] *= im.shape[0] / 128
gtlines[:, :, 1] *= im.shape[1] / 128
for i in range(1, len(lines)):
if (lines[i] == lines[0]).all():
lines = lines[:i]
scores = scores[:i]
break
lines[:, :, 0] *= im.shape[0] / 128
lines[:, :, 1] *= im.shape[1] / 128
diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5
for threshold in thresholds:
nlines, nscores = postprocess(lines, scores, diag * threshold, 0, False)
outdir = osp.join(prefix, f"{threshold:.3f}".replace(".", "_"))
os.makedirs(outdir, exist_ok=True)
npz_name = osp.join(outdir, osp.split(fname)[-1])
if args["--plot"]:
# plot gt
imshow(im[:, :, ::-1])
for (a, b) in gtlines:
plt.plot([a[1], b[1]], [a[0], b[0]], c="orange", linewidth=0.5)
plt.scatter(a[1], a[0], **PLTOPTS)
plt.scatter(b[1], b[0], **PLTOPTS)
plt.savefig(npz_name.replace(".npz", ".png"), dpi=500, bbox_inches=0)
thres = [0.96, 0.97, 0.98, 0.99]
for i, t in enumerate(thres):
imshow(im[:, :, ::-1])
for (a, b), s in zip(nlines[nscores > t], nscores[nscores > t]):
plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=0.5)
plt.scatter(a[1], a[0], **PLTOPTS)
plt.scatter(b[1], b[0], **PLTOPTS)
plt.savefig(
npz_name.replace(".npz", f"_{i}.png"), dpi=500, bbox_inches=0
)
nlines[:, :, 0] *= 128 / im.shape[0]
nlines[:, :, 1] *= 128 / im.shape[1]
np.savez_compressed(npz_name, lines=nlines, score=nscores)
parmap(handle, inputs, 12)
if __name__ == "__main__":
main()