-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy patheval-mAPJ.py
executable file
·167 lines (134 loc) · 5.16 KB
/
eval-mAPJ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python3
"""Evaluate mAPJ for LCNN, AFM, and Wireframe
Usage:
eval-mAPJ.py <path>...
eval-mAPJ.py (-h | --help )
Examples:
python eval-mAPJ.py logs/*
Arguments:
<path> One or more directories that contain *.npz
Options:
-h --help Show this screen.
"""
import os
import re
import glob
import os.path as osp
from collections import defaultdict
import cv2
import numpy as np
import matplotlib.pyplot as plt
from docopt import docopt
from scipy.io import loadmat
import lcnn.models
from lcnn.metric import mAPJ, post_jheatmap
GT = "data/wireframe/valid/*.npz"
IM = "data/wireframe/valid-images/*.jpg"
WF = "/data/wirebase/result/junc/2/17"
AFM = "/data/wirebase/result/wireframe/afm/*.npz"
DIST = [0.5, 1.0, 2.0]
def evaluate_lcnn(im_list, gt_list, lcnn_list):
# define result array to aggregate (n x 3) where 3 is (x, y, score)
all_junc = np.zeros((0, 3))
all_offset_junc = np.zeros((0, 3))
# for each detected junction, which image they correspond to
all_junc_ids = np.zeros(0, dtype=np.int32)
# gt is a list since the variable gt number per image
all_jc_gt = []
for i, (lcnn_fn, gt_fn) in enumerate(zip(lcnn_list, gt_list)):
with np.load(lcnn_fn) as npz:
result = {name: arr for name, arr in npz.items()}
jmap = result["jmap"]
joff = result["joff"]
with np.load(gt_fn) as npz:
junc_gt = npz["junc"][:, :2]
# for j in junc_gt:
# plt.scatter(round(j[1]), round(j[0]), c="red")
# for j in juncs_wf:
# plt.scatter(round(j[1]), round(j[0]), c="blue")
# plt.show()
jun_c = post_jheatmap(jmap[0])
all_junc = np.vstack((all_junc, jun_c))
jun_o_c = post_jheatmap(jmap[0], offset=joff[0])
all_offset_junc = np.vstack((all_offset_junc, jun_o_c))
all_jc_gt.append(junc_gt)
all_junc_ids = np.hstack((all_junc_ids, np.array([i] * len(jun_c))))
# sometimes filter all and concat empty list will change dtype
all_junc_ids = all_junc_ids.astype(np.int64)
ap_jc = mAPJ(all_junc, all_jc_gt, DIST, all_junc_ids)
ap_joc = mAPJ(all_offset_junc, all_jc_gt, DIST, all_junc_ids)
print(f" {ap_jc:.1f} | {ap_joc:.1f}")
def evaluate_wireframe(im_list, gt_list, juncs_wf):
print("Compute WF mAP")
juncs_wf = load_wf()
all_junc = np.zeros((0, 3))
all_junc_ids = np.zeros(0, dtype=np.int32)
all_jc_gt = []
for i, (im_fn, gt_fn, junc_wf) in enumerate(zip(im_list, gt_list, juncs_wf)):
im = cv2.imread(im_fn)
im = cv2.resize(im, (128, 128))
with np.load(gt_fn) as npz:
junc_gt = npz["junc"][:, :2]
jun_c = sorted(junc_wf, key=lambda x: -x[2])[:1000]
all_junc = np.vstack((all_junc, jun_c))
all_jc_gt.append(junc_gt)
all_junc_ids = np.hstack((all_junc_ids, np.array([i] * len(jun_c))))
all_junc_ids = all_junc_ids.astype(np.int64)
ap_jc = mAPJ(all_junc, all_jc_gt, DIST, all_junc_ids)
print(f" {ap_jc:.1f}")
def evaluate_afm(im_list, gt_list, afm):
print("Compute AFM mAP")
all_junc = np.zeros((0, 3))
all_junc_ids = np.zeros(0, dtype=np.int32)
all_jc_gt = []
afm = glob.glob(AFM)
afm.sort()
for i, (im_fn, gt_fn, afm_fn) in enumerate(zip(im_list, gt_list, afm)):
im = cv2.imread(im_fn)
im = cv2.resize(im, (128, 128))
with np.load(gt_fn) as npz:
junc_gt = npz["junc"][:, :2]
with np.load(afm_fn) as fafm:
afm_line = fafm["lines"].reshape(-1, 2, 2)[:, :, ::-1]
afm_score = -fafm["scores"]
h = fafm["h"]
w = fafm["w"]
afm_line[:, :, 0] *= 128 / h
afm_line[:, :, 1] *= 128 / w
jun_c = []
for line, score in zip(afm_line, afm_score):
jun_c.append(list(line[0]) + [score])
jun_c.append(list(line[1]) + [score])
jun_c = np.array(jun_c)
all_junc = np.vstack((all_junc, jun_c))
all_jc_gt.append(junc_gt)
all_junc_ids = np.hstack((all_junc_ids, np.array([i] * len(jun_c))))
all_junc_ids = all_junc_ids.astype(np.int64)
ap_jc = mAPJ(all_junc, all_jc_gt, DIST, all_junc_ids)
print(f" {ap_jc:.1f}")
def load_wf():
pts = [defaultdict(int) for _ in range(500)]
for thres in range(10):
mats = sorted(glob.glob(f"{WF}/{thres}/*.mat"))
for i, mat in enumerate(mats):
img = cv2.imread(mat.replace(".mat", "_5.png"))
juncs = loadmat(mat)["junctions"]
if len(juncs) == 0:
continue
juncs[:, 0] *= 128 / img.shape[1]
juncs[:, 1] *= 128 / img.shape[0]
# juncs += 0.5
for j in juncs:
pts[i][tuple(j)] += 1
pts = pts[: len(mats)]
return [np.array([(k[1], k[0], v) for k, v in ipts.items()]) for ipts in pts]
def main():
args = docopt(__doc__)
gt_list = sorted(glob.glob(GT))
im_list = sorted(glob.glob(IM))
for path in args["<path>"]:
print("Evaluating", path)
lcnn_list = sorted(glob.glob(osp.join(path, "*.npz")))
evaluate_lcnn(im_list, gt_list, lcnn_list)
if __name__ == "__main__":
main()