-
Notifications
You must be signed in to change notification settings - Fork 95
/
demo.py
executable file
·145 lines (126 loc) · 4.79 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python3
"""Process an image with the trained neural network
Usage:
demo.py [options] <yaml-config> <checkpoint> <images>...
demo.py (-h | --help )
Arguments:
<yaml-config> Path to the yaml hyper-parameter file
<checkpoint> Path to the checkpoint
<images> Path to images
Options:
-h --help Show this screen.
-d --devices <devices> Comma seperated GPU devices [default: 0]
"""
import os
import os.path as osp
import pprint
import random
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import skimage.io
import skimage.transform
import torch
import yaml
from docopt import docopt
import lcnn
from lcnn.config import C, M
from lcnn.models.line_vectorizer import LineVectorizer
from lcnn.models.multitask_learner import MultitaskHead, MultitaskLearner
from lcnn.postprocess import postprocess
from lcnn.utils import recursive_to
PLTOPTS = {"color": "#33FFFF", "s": 15, "edgecolors": "none", "zorder": 5}
cmap = plt.get_cmap("jet")
norm = mpl.colors.Normalize(vmin=0.9, vmax=1.0)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
sm.set_array([])
def c(x):
return sm.to_rgba(x)
def main():
args = docopt(__doc__)
config_file = args["<yaml-config>"] or "config/wireframe.yaml"
C.update(C.from_yaml(filename=config_file))
M.update(C.model)
pprint.pprint(C, indent=4)
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
device_name = "cpu"
os.environ["CUDA_VISIBLE_DEVICES"] = args["--devices"]
if torch.cuda.is_available():
device_name = "cuda"
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed(0)
print("Let's use", torch.cuda.device_count(), "GPU(s)!")
else:
print("CUDA is not available")
device = torch.device(device_name)
checkpoint = torch.load(args["<checkpoint>"], map_location=device)
# Load model
model = lcnn.models.hg(
depth=M.depth,
head=lambda c_in, c_out: MultitaskHead(c_in, c_out),
num_stacks=M.num_stacks,
num_blocks=M.num_blocks,
num_classes=sum(sum(M.head_size, [])),
)
model = MultitaskLearner(model)
model = LineVectorizer(model)
model.load_state_dict(checkpoint["model_state_dict"])
model = model.to(device)
model.eval()
for imname in args["<images>"]:
print(f"Processing {imname}")
im = skimage.io.imread(imname)
if im.ndim == 2:
im = np.repeat(im[:, :, None], 3, 2)
im = im[:, :, :3]
im_resized = skimage.transform.resize(im, (512, 512)) * 255
image = (im_resized - M.image.mean) / M.image.stddev
image = torch.from_numpy(np.rollaxis(image, 2)[None].copy()).float()
with torch.no_grad():
input_dict = {
"image": image.to(device),
"meta": [
{
"junc": torch.zeros(1, 2).to(device),
"jtyp": torch.zeros(1, dtype=torch.uint8).to(device),
"Lpos": torch.zeros(2, 2, dtype=torch.uint8).to(device),
"Lneg": torch.zeros(2, 2, dtype=torch.uint8).to(device),
}
],
"target": {
"jmap": torch.zeros([1, 1, 128, 128]).to(device),
"joff": torch.zeros([1, 1, 2, 128, 128]).to(device),
},
"do_evaluation": True,
}
H = model(input_dict)["preds"]
lines = H["lines"][0].cpu().numpy() / 128 * im.shape[:2]
scores = H["score"][0].cpu().numpy()
for i in range(1, len(lines)):
if (lines[i] == lines[0]).all():
lines = lines[:i]
scores = scores[:i]
break
# postprocess lines to remove overlapped lines
diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5
nlines, nscores = postprocess(lines, scores, diag * 0.01, 0, False)
for i, t in enumerate([0.94, 0.95, 0.96, 0.97, 0.98, 0.99]):
plt.gca().set_axis_off()
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
for (a, b), s in zip(nlines, nscores):
if s < t:
continue
plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=2, zorder=s)
plt.scatter(a[1], a[0], **PLTOPTS)
plt.scatter(b[1], b[0], **PLTOPTS)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.imshow(im)
plt.savefig(imname.replace(".png", f"-{t:.02f}.svg"), bbox_inches="tight")
plt.show()
plt.close()
if __name__ == "__main__":
main()