-
Notifications
You must be signed in to change notification settings - Fork 11
/
misc.py
executable file
·376 lines (334 loc) · 12 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import json
import logging
import math
import numpy as np
import os
from datetime import datetime
import psutil
import torch
# from fvcore.common.file_io import PathManager
# from fvcore.nn.activation_count import activation_count
# from fvcore.nn.flop_count import flop_count
from matplotlib import pyplot as plt
from torch import nn
import util.multiprocessing as mpu
# import slowfast.utils.logging as logging
# import multiprocessing as mpu
# from slowfast.datasets.utils import pack_pathway_output
# from slowfast.models.batchnorm_helper import SubBatchNorm3d
# logger = logging.get_logger(__name__)
def check_nan_losses(loss):
"""
Determine whether the loss is NaN (not a number).
Args:
loss (loss): loss to check whether is NaN.
"""
if math.isnan(loss):
raise RuntimeError("ERROR: Got NaN losses {}".format(datetime.now()))
def params_count(model, ignore_bn=False):
"""
Compute the number of parameters.
Args:
model (model): model to count the number of parameters.
"""
if not ignore_bn:
return np.sum([p.numel() for p in model.parameters()]).item()
else:
count = 0
for m in model.modules():
if not isinstance(m, nn.BatchNorm3d):
for p in m.parameters(recurse=False):
count += p.numel()
return count
def gpu_mem_usage():
"""
Compute the GPU memory usage for the current device (GB).
"""
if torch.cuda.is_available():
mem_usage_bytes = torch.cuda.max_memory_allocated()
else:
mem_usage_bytes = 0
return mem_usage_bytes / 1024 ** 3
def cpu_mem_usage():
"""
Compute the system memory (RAM) usage for the current device (GB).
Returns:
usage (float): used memory (GB).
total (float): total memory (GB).
"""
vram = psutil.virtual_memory()
usage = (vram.total - vram.available) / 1024 ** 3
total = vram.total / 1024 ** 3
return usage, total
def _get_model_analysis_input(cfg, use_train_input):
"""
Return a dummy input for model analysis with batch size 1. The input is
used for analyzing the model (counting flops and activations etc.).
Args:
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
use_train_input (bool): if True, return the input for training. Otherwise,
return the input for testing.
Returns:
inputs: the input for model analysis.
"""
rgb_dimension = 3
if use_train_input:
input_tensors = torch.rand(
rgb_dimension,
cfg.DATA.NUM_FRAMES,
cfg.DATA.TRAIN_CROP_SIZE,
cfg.DATA.TRAIN_CROP_SIZE,
)
else:
input_tensors = torch.rand(
rgb_dimension,
cfg.DATA.NUM_FRAMES,
cfg.DATA.TEST_CROP_SIZE,
cfg.DATA.TEST_CROP_SIZE,
)
model_inputs = pack_pathway_output(cfg, input_tensors)
for i in range(len(model_inputs)):
model_inputs[i] = model_inputs[i].unsqueeze(0)
if cfg.NUM_GPUS:
model_inputs[i] = model_inputs[i].cuda(non_blocking=True)
# If detection is enabled, count flops for one proposal.
if cfg.DETECTION.ENABLE:
bbox = torch.tensor([[0, 0, 1.0, 0, 1.0]])
if cfg.NUM_GPUS:
bbox = bbox.cuda()
inputs = (model_inputs, bbox)
else:
inputs = (model_inputs,)
return inputs
def get_model_stats(model, cfg, mode, use_train_input):
"""
Compute statistics for the current model given the config.
Args:
model (model): model to perform analysis.
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
mode (str): Options include `flop` or `activation`. Compute either flop
(gflops) or activation count (mega).
use_train_input (bool): if True, compute statistics for training. Otherwise,
compute statistics for testing.
Returns:
float: the total number of count of the given model.
"""
assert mode in [
"flop",
"activation",
], "'{}' not supported for model analysis".format(mode)
if mode == "flop":
model_stats_fun = flop_count
elif mode == "activation":
model_stats_fun = activation_count
# Set model to evaluation mode for analysis.
# Evaluation mode can avoid getting stuck with sync batchnorm.
model_mode = model.training
model.eval()
inputs = _get_model_analysis_input(cfg, use_train_input)
count_dict, *_ = model_stats_fun(model, inputs)
count = sum(count_dict.values())
model.train(model_mode)
return count
def log_model_info(model, cfg, use_train_input=True):
"""
Log info, includes number of parameters, gpu usage, gflops and activation count.
The model info is computed when the model is in validation mode.
Args:
model (model): model to log the info.
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
use_train_input (bool): if True, log info for training. Otherwise,
log info for testing.
"""
logger.info("Model:\n{}".format(model))
logger.info("Params: {:,}".format(params_count(model)))
logger.info("Mem: {:,} MB".format(gpu_mem_usage()))
logger.info(
"Flops: {:,} G".format(
get_model_stats(model, cfg, "flop", use_train_input)
)
)
logger.info(
"Activations: {:,} M".format(
get_model_stats(model, cfg, "activation", use_train_input)
)
)
logger.info("nvidia-smi")
os.system("nvidia-smi")
def is_eval_epoch(cfg, cur_epoch, multigrid_schedule):
"""
Determine if the model should be evaluated at the current epoch.
Args:
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
cur_epoch (int): current epoch.
multigrid_schedule (List): schedule for multigrid training.
"""
if cur_epoch + 1 == cfg.SOLVER.MAX_EPOCH:
return True
if multigrid_schedule is not None:
prev_epoch = 0
for s in multigrid_schedule:
if cur_epoch < s[-1]:
period = max(
(s[-1] - prev_epoch) // cfg.MULTIGRID.EVAL_FREQ + 1, 1
)
return (s[-1] - 1 - cur_epoch) % period == 0
prev_epoch = s[-1]
return (cur_epoch + 1) % cfg.TRAIN.EVAL_PERIOD == 0
def plot_input(tensor, bboxes=(), texts=(), path="./tmp_vis.png"):
"""
Plot the input tensor with the optional bounding box and save it to disk.
Args:
tensor (tensor): a tensor with shape of `NxCxHxW`.
bboxes (tuple): bounding boxes with format of [[x, y, h, w]].
texts (tuple): a tuple of string to plot.
path (str): path to the image to save to.
"""
tensor = tensor.float()
tensor = tensor - tensor.min()
tensor = tensor / tensor.max()
f, ax = plt.subplots(nrows=1, ncols=tensor.shape[0], figsize=(50, 20))
for i in range(tensor.shape[0]):
ax[i].axis("off")
ax[i].imshow(tensor[i].permute(1, 2, 0))
# ax[1][0].axis('off')
if bboxes is not None and len(bboxes) > i:
for box in bboxes[i]:
x1, y1, x2, y2 = box
ax[i].vlines(x1, y1, y2, colors="g", linestyles="solid")
ax[i].vlines(x2, y1, y2, colors="g", linestyles="solid")
ax[i].hlines(y1, x1, x2, colors="g", linestyles="solid")
ax[i].hlines(y2, x1, x2, colors="g", linestyles="solid")
if texts is not None and len(texts) > i:
ax[i].text(0, 0, texts[i])
f.savefig(path)
def frozen_bn_stats(model):
"""
Set all the bn layers to eval mode.
Args:
model (model): model to set bn layers to eval mode.
"""
for m in model.modules():
if isinstance(m, nn.BatchNorm3d):
m.eval()
def aggregate_sub_bn_stats(module):
"""
Recursively find all SubBN modules and aggregate sub-BN stats.
Args:
module (nn.Module)
Returns:
count (int): number of SubBN module found.
"""
count = 0
for child in module.children():
if isinstance(child, SubBatchNorm3d):
child.aggregate_stats()
count += 1
else:
count += aggregate_sub_bn_stats(child)
return count
def launch_job(cfg, init_method, func, daemon=False):
"""
Run 'func' on one or more GPUs, specified in cfg
Args:
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
init_method (str): initialization method to launch the job with multiple
devices.
func (function): job to run on GPU(s)
daemon (bool): The spawned processes’ daemon flag. If set to True,
daemonic processes will be created
"""
if cfg.NUM_GPUS > 1:
torch.multiprocessing.spawn(
mpu.run,
nprocs=cfg.NUM_GPUS,
args=(
cfg.NUM_GPUS,
func,
init_method,
cfg.SHARD_ID,
cfg.NUM_SHARDS,
cfg.DIST_BACKEND,
cfg,
),
daemon=daemon,
)
else:
func(cfg=cfg)
def get_class_names(path, parent_path=None, subset_path=None):
"""
Read json file with entries {classname: index} and return
an array of class names in order.
If parent_path is provided, load and map all children to their ids.
Args:
path (str): path to class ids json file.
File must be in the format {"class1": id1, "class2": id2, ...}
parent_path (Optional[str]): path to parent-child json file.
File must be in the format {"parent1": ["child1", "child2", ...], ...}
subset_path (Optional[str]): path to text file containing a subset
of class names, separated by newline characters.
Returns:
class_names (list of strs): list of class names.
class_parents (dict): a dictionary where key is the name of the parent class
and value is a list of ids of the children classes.
subset_ids (list of ints): list of ids of the classes provided in the
subset file.
"""
try:
with PathManager.open(path, "r") as f:
class2idx = json.load(f)
except Exception as err:
print("Fail to load file from {} with error {}".format(path, err))
return
max_key = max(class2idx.values())
class_names = [None] * (max_key + 1)
for k, i in class2idx.items():
class_names[i] = k
class_parent = None
if parent_path is not None and parent_path != "":
try:
with PathManager.open(parent_path, "r") as f:
d_parent = json.load(f)
except EnvironmentError as err:
print(
"Fail to load file from {} with error {}".format(
parent_path, err
)
)
return
class_parent = {}
for parent, children in d_parent.items():
indices = [
class2idx[c] for c in children if class2idx.get(c) is not None
]
class_parent[parent] = indices
subset_ids = None
if subset_path is not None and subset_path != "":
try:
with PathManager.open(subset_path, "r") as f:
subset = f.read().split("\n")
subset_ids = [
class2idx[name]
for name in subset
if class2idx.get(name) is not None
]
except EnvironmentError as err:
print(
"Fail to load file from {} with error {}".format(
subset_path, err
)
)
return
return class_names, class_parent, subset_ids
def inverse_sigmoid(x, eps=1e-5):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1/x2)