Skip to content

zhelishisongjie/SSFER

Repository files navigation

Bridging the Gaps: Utilizing Unlabeled Face Recognition Datasets to Boost Semi-Supervised Facial Expression Recognition

Table of Contents

Overview

This is the official PyTorch implementation of the paper "Bridging the Gaps: Utilizing Unlabeled Face Recognition Datasets to Boost Semi-Supervised Facial Expression Recognition".


Teaser image

Dataset

Dataset homepage train size test size
RAF-DB http://www.whdeng.cn/raf/model1.html 12271 3068
FERPlus https://github.com/microsoft/FERPlus 287401 3500
AffectNet-7 http://mohammadmahoor.com/affectnet/ 291651 4000
AffectNet-8 http://mohammadmahoor.com/affectnet/ 28709 7178

Results and Checkpoints

Pretrain model weights is available checkpoints

Model weights

Method Dataset Accuracy weights
SSFER-5% RAF-DB 80.96 checkpoints
SSFER-10% RAF-DB 85.07 checkpoints
SSFER-25% RAF-DB 88.23 checkpoints
SSFER-5% FERPlus 81.77 checkpoints
SSFER-10% FERPlus 83.95 checkpoints
SSFER-25% FERPlus 85.82 checkpoints
SSFER-1% AffectNet-7 59.08 checkpoints
SSFER-5% AffectNet-7 64.02 checkpoints
SSFER-10% AffectNet-7 65.37 checkpoints
SSFER-1% AffectNet-8 53.85 checkpoints
SSFER-5% AffectNet-8 60.17 checkpoints
SSFER-10% AffectNet-8 61.65 checkpoints

Requirements

  1. Clone the repository:
git clone https://github.com/{USERNAME}/{REPO_NAME}.git
cd SSFER
  1. Create a conda environment and install the required dependencies:
conda create -n {ENV_NAME} python=3.10
conda activate {ENV_NAME}
pip install -r requirements.txt

Finally, these files should be organized as follows:

├── RAF-DB
│   ├── train
│   └── test
├── FERPlus
│   ├── train
│   └── test
├── AffectNet-7
│   ├── train
│   └── test
├── AffectNet-8
│   ├── train
│   └── test
├── outputs_dir
│   ├── SSFER_FERPlus_0.05_model.pth
│   ├── SSFER_FERPlus_0.10_model.pth
│   ├── SSFER_FERPlus_0.25_model.pth
│   ├── SSFER_RAFDB_0.05_model.pth
│   ├── ......
│   ├── SSFER_AffcetNet8_0.01_model.pth
│   ├── SSFER_AffcetNet8_0.05_model.pth
│   ├── SSFER_AffcetNet8_0.10_model.pth
│   ├── 125w_base_warmup50_batch256_600.pth
│   ├── yolov7s-face.pt
├── utils
│   ├── ......
├── MAE_model.py
├── test.ipynb

The yolo-face repository used in the article is here.

Citation

Bibtex Citation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published