-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathemo.py
841 lines (710 loc) · 32.1 KB
/
emo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
from __future__ import division
import bisect
from collections import defaultdict, namedtuple
from itertools import chain
import math
from operator import attrgetter, itemgetter
import random
import numpy
######################################
# Non-Dominated Sorting (NSGA-II) #
######################################
def selNSGA2(individuals, k, nd='standard'):
"""Apply NSGA-II selection operator on the *individuals*. Usually, the
size of *individuals* will be larger than *k* because any individual
present in *individuals* will appear in the returned list at most once.
Having the size of *individuals* equals to *k* will have no effect other
than sorting the population according to their front rank. The
list returned contains references to the input *individuals*. For more
details on the NSGA-II operator see [Deb2002]_.
:param individuals: A list of individuals to select from.
:param k: The number of individuals to select.
:param nd: Specify the non-dominated algorithm to use: 'standard' or 'log'.
:returns: A list of selected individuals.
.. [Deb2002] Deb, Pratab, Agarwal, and Meyarivan, "A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II", 2002.
"""
if nd == 'standard':
pareto_fronts = sortNondominated(individuals, k)
elif nd == 'log':
pareto_fronts = sortLogNondominated(individuals, k)
else:
raise Exception('selNSGA2: The choice of non-dominated sorting '
'method "{0}" is invalid.'.format(nd))
for front in pareto_fronts:
assignCrowdingDist(front)
chosen = list(chain(*pareto_fronts[:-1]))
k = k - len(chosen)
if k > 0:
sorted_front = sorted(pareto_fronts[-1], key=attrgetter("fitness.crowding_dist"), reverse=True)
chosen.extend(sorted_front[:k])
return chosen
def sortNondominated(individuals, k, first_front_only=False):
"""Sort the first *k* *individuals* into different nondomination levels
using the "Fast Nondominated Sorting Approach" proposed by Deb et al.,
see [Deb2002]_. This algorithm has a time complexity of :math:`O(MN^2)`,
where :math:`M` is the number of objectives and :math:`N` the number of
individuals.
:param individuals: A list of individuals to select from.
:param k: The number of individuals to select.
:param first_front_only: If :obj:`True` sort only the first front and
exit.
:returns: A list of Pareto fronts (lists), the first list includes
nondominated individuals.
.. [Deb2002] Deb, Pratab, Agarwal, and Meyarivan, "A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II", 2002.
"""
if k == 0:
return []
map_fit_ind = defaultdict(list)
for ind in individuals:
map_fit_ind[ind.fitness].append(ind)
fits = map_fit_ind.keys()
current_front = []
next_front = []
dominating_fits = defaultdict(int)
dominated_fits = defaultdict(list)
# Rank first Pareto front
for i, fit_i in enumerate(fits):
for fit_j in fits[i+1:]:
if fit_i.dominates(fit_j):
dominating_fits[fit_j] += 1
dominated_fits[fit_i].append(fit_j)
elif fit_j.dominates(fit_i):
dominating_fits[fit_i] += 1
dominated_fits[fit_j].append(fit_i)
if dominating_fits[fit_i] == 0:
current_front.append(fit_i)
fronts = [[]]
for fit in current_front:
fronts[-1].extend(map_fit_ind[fit])
pareto_sorted = len(fronts[-1])
# Rank the next front until all individuals are sorted or
# the given number of individual are sorted.
if not first_front_only:
N = min(len(individuals), k)
while pareto_sorted < N:
fronts.append([])
for fit_p in current_front:
for fit_d in dominated_fits[fit_p]:
dominating_fits[fit_d] -= 1
if dominating_fits[fit_d] == 0:
next_front.append(fit_d)
pareto_sorted += len(map_fit_ind[fit_d])
fronts[-1].extend(map_fit_ind[fit_d])
current_front = next_front
next_front = []
return fronts
def assignCrowdingDist(individuals):
"""Assign a crowding distance to each individual's fitness. The
crowding distance can be retrieve via the :attr:`crowding_dist`
attribute of each individual's fitness.
"""
if len(individuals) == 0:
return
distances = [0.0] * len(individuals)
crowd = [(ind.fitness.values, i) for i, ind in enumerate(individuals)]
nobj = len(individuals[0].fitness.values)
for i in xrange(nobj):
crowd.sort(key=lambda element: element[0][i])
distances[crowd[0][1]] = float("inf")
distances[crowd[-1][1]] = float("inf")
if crowd[-1][0][i] == crowd[0][0][i]:
continue
norm = nobj * float(crowd[-1][0][i] - crowd[0][0][i])
for prev, cur, next in zip(crowd[:-2], crowd[1:-1], crowd[2:]):
distances[cur[1]] += (next[0][i] - prev[0][i]) / norm
for i, dist in enumerate(distances):
individuals[i].fitness.crowding_dist = dist
def selTournamentDCD(individuals, k):
"""Tournament selection based on dominance (D) between two individuals, if
the two individuals do not interdominate the selection is made
based on crowding distance (CD). The *individuals* sequence length has to
be a multiple of 4. Starting from the beginning of the selected
individuals, two consecutive individuals will be different (assuming all
individuals in the input list are unique). Each individual from the input
list won't be selected more than twice.
This selection requires the individuals to have a :attr:`crowding_dist`
attribute, which can be set by the :func:`assignCrowdingDist` function.
:param individuals: A list of individuals to select from.
:param k: The number of individuals to select.
:returns: A list of selected individuals.
"""
if len(individuals) % 4 != 0:
raise ValueError("selTournamentDCD: individuals length must be a multiple of 4")
if k % 4 != 0:
raise ValueError("selTournamentDCD: number of individuals to select must be a multiple of 4")
def tourn(ind1, ind2):
if ind1.fitness.dominates(ind2.fitness):
return ind1
elif ind2.fitness.dominates(ind1.fitness):
return ind2
if ind1.fitness.crowding_dist < ind2.fitness.crowding_dist:
return ind2
elif ind1.fitness.crowding_dist > ind2.fitness.crowding_dist:
return ind1
if random.random() <= 0.5:
return ind1
return ind2
individuals_1 = random.sample(individuals, len(individuals))
individuals_2 = random.sample(individuals, len(individuals))
chosen = []
for i in xrange(0, k, 4):
chosen.append(tourn(individuals_1[i], individuals_1[i+1]))
chosen.append(tourn(individuals_1[i+2], individuals_1[i+3]))
chosen.append(tourn(individuals_2[i], individuals_2[i+1]))
chosen.append(tourn(individuals_2[i+2], individuals_2[i+3]))
return chosen
#######################################
# Generalized Reduced runtime ND sort #
#######################################
def identity(obj):
"""Returns directly the argument *obj*.
"""
return obj
def isDominated(wvalues1, wvalues2):
"""Returns whether or not *wvalues1* dominates *wvalues2*.
:param wvalues1: The weighted fitness values that would be dominated.
:param wvalues2: The weighted fitness values of the dominant.
:returns: :obj:`True` if wvalues2 dominates wvalues1, :obj:`False`
otherwise.
"""
not_equal = False
for self_wvalue, other_wvalue in zip(wvalues1, wvalues2):
if self_wvalue > other_wvalue:
return False
elif self_wvalue < other_wvalue:
not_equal = True
return not_equal
def median(seq, key=identity):
"""Returns the median of *seq* - the numeric value separating the higher
half of a sample from the lower half. If there is an even number of
elements in *seq*, it returns the mean of the two middle values.
"""
sseq = sorted(seq, key=key)
length = len(seq)
if length % 2 == 1:
return key(sseq[(length - 1) // 2])
else:
return (key(sseq[(length - 1) // 2]) + key(sseq[length // 2])) / 2.0
def sortLogNondominated(individuals, k, first_front_only=False):
"""Sort *individuals* in pareto non-dominated fronts using the Generalized
Reduced Run-Time Complexity Non-Dominated Sorting Algorithm presented by
Fortin et al. (2013).
:param individuals: A list of individuals to select from.
:returns: A list of Pareto fronts (lists), with the first list being the
true Pareto front.
"""
if k == 0:
return []
#Separate individuals according to unique fitnesses
unique_fits = defaultdict(list)
for i, ind in enumerate(individuals):
unique_fits[ind.fitness.wvalues].append(ind)
#Launch the sorting algorithm
obj = len(individuals[0].fitness.wvalues)-1
fitnesses = unique_fits.keys()
front = dict.fromkeys(fitnesses, 0)
# Sort the fitnesses lexicographically.
fitnesses.sort(reverse=True)
sortNDHelperA(fitnesses, obj, front)
#Extract individuals from front list here
nbfronts = max(front.values())+1
pareto_fronts = [[] for i in range(nbfronts)]
for fit in fitnesses:
index = front[fit]
pareto_fronts[index].extend(unique_fits[fit])
# Keep only the fronts required to have k individuals.
if not first_front_only:
count = 0
for i, front in enumerate(pareto_fronts):
count += len(front)
if count >= k:
return pareto_fronts[:i+1]
return pareto_fronts
else:
return pareto_fronts[0]
def sortNDHelperA(fitnesses, obj, front):
"""Create a non-dominated sorting of S on the first M objectives"""
if len(fitnesses) < 2:
return
elif len(fitnesses) == 2:
# Only two individuals, compare them and adjust front number
s1, s2 = fitnesses[0], fitnesses[1]
if isDominated(s2[:obj+1], s1[:obj+1]):
front[s2] = max(front[s2], front[s1] + 1)
elif obj == 1:
sweepA(fitnesses, front)
elif len(frozenset(map(itemgetter(obj), fitnesses))) == 1:
#All individuals for objective M are equal: go to objective M-1
sortNDHelperA(fitnesses, obj-1, front)
else:
# More than two individuals, split list and then apply recursion
best, worst = splitA(fitnesses, obj)
sortNDHelperA(best, obj, front)
sortNDHelperB(best, worst, obj-1, front)
sortNDHelperA(worst, obj, front)
def splitA(fitnesses, obj):
"""Partition the set of fitnesses in two according to the median of
the objective index *obj*. The values equal to the median are put in
the set containing the least elements.
"""
median_ = median(fitnesses, itemgetter(obj))
best_a, worst_a = [], []
best_b, worst_b = [], []
for fit in fitnesses:
if fit[obj] > median_:
best_a.append(fit)
best_b.append(fit)
elif fit[obj] < median_:
worst_a.append(fit)
worst_b.append(fit)
else:
best_a.append(fit)
worst_b.append(fit)
balance_a = abs(len(best_a) - len(worst_a))
balance_b = abs(len(best_b) - len(worst_b))
if balance_a <= balance_b:
return best_a, worst_a
else:
return best_b, worst_b
def sweepA(fitnesses, front):
"""Update rank number associated to the fitnesses according
to the first two objectives using a geometric sweep procedure.
"""
stairs = [-fitnesses[0][1]]
fstairs = [fitnesses[0]]
for fit in fitnesses[1:]:
idx = bisect.bisect_right(stairs, -fit[1])
if 0 < idx <= len(stairs):
fstair = max(fstairs[:idx], key=front.__getitem__)
front[fit] = max(front[fit], front[fstair]+1)
for i, fstair in enumerate(fstairs[idx:], idx):
if front[fstair] == front[fit]:
del stairs[i]
del fstairs[i]
break
stairs.insert(idx, -fit[1])
fstairs.insert(idx, fit)
def sortNDHelperB(best, worst, obj, front):
"""Assign front numbers to the solutions in H according to the solutions
in L. The solutions in L are assumed to have correct front numbers and the
solutions in H are not compared with each other, as this is supposed to
happen after sortNDHelperB is called."""
key = itemgetter(obj)
if len(worst) == 0 or len(best) == 0:
#One of the lists is empty: nothing to do
return
elif len(best) == 1 or len(worst) == 1:
#One of the lists has one individual: compare directly
for hi in worst:
for li in best:
if isDominated(hi[:obj+1], li[:obj+1]) or hi[:obj+1] == li[:obj+1]:
front[hi] = max(front[hi], front[li] + 1)
elif obj == 1:
sweepB(best, worst, front)
elif key(min(best, key=key)) >= key(max(worst, key=key)):
#All individuals from L dominate H for objective M:
#Also supports the case where every individuals in L and H
#has the same value for the current objective
#Skip to objective M-1
sortNDHelperB(best, worst, obj-1, front)
elif key(max(best, key=key)) >= key(min(worst, key=key)):
best1, best2, worst1, worst2 = splitB(best, worst, obj)
sortNDHelperB(best1, worst1, obj, front)
sortNDHelperB(best1, worst2, obj-1, front)
sortNDHelperB(best2, worst2, obj, front)
def splitB(best, worst, obj):
"""Split both best individual and worst sets of fitnesses according
to the median of objective *obj* computed on the set containing the
most elements. The values equal to the median are attributed so as
to balance the four resulting sets as much as possible.
"""
median_ = median(best if len(best) > len(worst) else worst, itemgetter(obj))
best1_a, best2_a, best1_b, best2_b = [], [], [], []
for fit in best:
if fit[obj] > median_:
best1_a.append(fit)
best1_b.append(fit)
elif fit[obj] < median_:
best2_a.append(fit)
best2_b.append(fit)
else:
best1_a.append(fit)
best2_b.append(fit)
worst1_a, worst2_a, worst1_b, worst2_b = [], [], [], []
for fit in worst:
if fit[obj] > median_:
worst1_a.append(fit)
worst1_b.append(fit)
elif fit[obj] < median_:
worst2_a.append(fit)
worst2_b.append(fit)
else:
worst1_a.append(fit)
worst2_b.append(fit)
balance_a = abs(len(best1_a) - len(best2_a) + len(worst1_a) - len(worst2_a))
balance_b = abs(len(best1_b) - len(best2_b) + len(worst1_b) - len(worst2_b))
if balance_a <= balance_b:
return best1_a, best2_a, worst1_a, worst2_a
else:
return best1_b, best2_b, worst1_b, worst2_b
def sweepB(best, worst, front):
"""Adjust the rank number of the worst fitnesses according to
the best fitnesses on the first two objectives using a sweep
procedure.
"""
stairs, fstairs = [], []
iter_best = iter(best)
next_best = next(iter_best, False)
for h in worst:
while next_best and h[:2] <= next_best[:2]:
insert = True
for i, fstair in enumerate(fstairs):
if front[fstair] == front[next_best]:
if fstair[1] > next_best[1]:
insert = False
else:
del stairs[i], fstairs[i]
break
if insert:
idx = bisect.bisect_right(stairs, -next_best[1])
stairs.insert(idx, -next_best[1])
fstairs.insert(idx, next_best)
next_best = next(iter_best, False)
idx = bisect.bisect_right(stairs, -h[1])
if 0 < idx <= len(stairs):
fstair = max(fstairs[:idx], key=front.__getitem__)
front[h] = max(front[h], front[fstair]+1)
######################################
# Non-Dominated Sorting (NSGA-III) #
######################################
NSGA3Memory = namedtuple("NSGA3Memory", ["best_point", "worst_point", "extreme_points"])
class selNSGA3WithMemory(object):
"""Class version of NSGA-III selection including memory for best, worst and
extreme points. Registering this operator in a toolbox is a bit different
than classical operators, it requires to instanciate the class instead
of just registering the function::
>>> from deap import base
>>> ref_points = uniform_reference_points(nobj=3, p=12)
>>> toolbox = base.Toolbox()
>>> toolbox.register("select", selNSGA3WithMemory(ref_points))
"""
def __init__(self, ref_points, nd="log"):
self.ref_points = ref_points
self.nd = nd
self.best_point = numpy.full((1, ref_points.shape[1]), numpy.inf)
self.worst_point = numpy.full((1, ref_points.shape[1]), -numpy.inf)
self.extreme_points = None
def __call__(self, individuals, k):
chosen, memory = selNSGA3(individuals, k, self.ref_points, self.nd,
self.best_point, self.worst_point,
self.extreme_points, True)
self.best_point = memory.best_point.reshape((1, -1))
self.worst_point = memory.worst_point.reshape((1, -1))
self.extreme_points = memory.extreme_points
return chosen
def selNSGA3(individuals, k, ref_points, nd="log", best_point=None,
worst_point=None, extreme_points=None, return_memory=False):
"""Implementation of NSGA-III selection as presented in [Deb2014]_.
This implementation is partly based on `lmarti/nsgaiii
<https://github.com/lmarti/nsgaiii>`_. It departs slightly from the
original implementation in that it does not use memory to keep track
of ideal and extreme points. This choice has been made to fit the
functional api of DEAP. For a version of NSGA-III see
:class:`~deap.tools.selNSGA3WithMemory`.
:param individuals: A list of individuals to select from.
:param k: The number of individuals to select.
:param ref_points: Reference points to use for niching.
:param nd: Specify the non-dominated algorithm to use: 'standard' or 'log'.
:param best_point: Best point found at previous generation. If not provided
find the best point only from current individuals.
:param worst_point: Worst point found at previous generation. If not provided
find the worst point only from current individuals.
:param extreme_points: Extreme points found at previous generation. If not provided
find the extreme points only from current individuals.
:param return_memory: If :data:`True`, return the best, worst and extreme points
in addition to the chosen individuals.
:returns: A list of selected individuals.
:returns: If `return_memory` is :data:`True`, a namedtuple with the
`best_point`, `worst_point`, and `extreme_points`.
You can generate the reference points using the :func:`uniform_reference_points`
function::
>>> ref_points = tools.uniform_reference_points(nobj=3, p=12) # doctest: +SKIP
>>> selected = selNSGA3(population, k, ref_points) # doctest: +SKIP
.. [Deb2014] Deb, K., & Jain, H. (2014). An Evolutionary Many-Objective Optimization
Algorithm Using Reference-Point-Based Nondominated Sorting Approach,
Part I: Solving Problems With Box Constraints. IEEE Transactions on
Evolutionary Computation, 18(4), 577-601. doi:10.1109/TEVC.2013.2281535.
"""
if nd == "standard":
pareto_fronts = sortNondominated(individuals, k)
elif nd == "log":
pareto_fronts = sortLogNondominated(individuals, k)
else:
raise Exception("selNSGA3: The choice of non-dominated sorting "
"method '{0}' is invalid.".format(nd))
# Extract fitnesses as a numpy array in the nd-sort order
# Use wvalues * -1 to tackle always as a minimization problem
fitnesses = numpy.array([ind.fitness.wvalues for f in pareto_fronts for ind in f])
fitnesses *= -1
# Get best and worst point of population, contrary to pymoo
# we don't use memory
if best_point is not None and worst_point is not None:
best_point = numpy.min(numpy.concatenate((fitnesses, best_point), axis=0), axis=0)
worst_point = numpy.max(numpy.concatenate((fitnesses, worst_point), axis=0), axis=0)
else:
best_point = numpy.min(fitnesses, axis=0)
worst_point = numpy.max(fitnesses, axis=0)
extreme_points = find_extreme_points(fitnesses, best_point, extreme_points)
front_worst = numpy.max(fitnesses[:sum(len(f) for f in pareto_fronts), :], axis=0)
intercepts = find_intercepts(extreme_points, best_point, worst_point, front_worst)
niches, dist = associate_to_niche(fitnesses, ref_points, best_point, intercepts)
# Get counts per niche for individuals in all front but the last
niche_counts = numpy.zeros(len(ref_points), dtype=numpy.int64)
index, counts = numpy.unique(niches[:-len(pareto_fronts[-1])], return_counts=True)
niche_counts[index] = counts
# Choose individuals from all fronts but the last
chosen = list(chain(*pareto_fronts[:-1]))
# Use niching to select the remaining individuals
sel_count = len(chosen)
n = k - sel_count
selected = niching(pareto_fronts[-1], n, niches[sel_count:], dist[sel_count:], niche_counts)
chosen.extend(selected)
if return_memory:
return chosen, NSGA3Memory(best_point, worst_point, extreme_points)
return chosen
def find_extreme_points(fitnesses, best_point, extreme_points=None):
'Finds the individuals with extreme values for each objective function.'
# Keep track of last generation extreme points
if extreme_points is not None:
fitnesses = numpy.concatenate((fitnesses, extreme_points), axis=0)
# Translate objectives
ft = fitnesses - best_point
# Find achievement scalarizing function (asf)
asf = numpy.eye(best_point.shape[0])
asf[asf == 0] = 1e6
asf = numpy.max(ft * asf[:, numpy.newaxis, :], axis=2)
# Extreme point are the fitnesses with minimal asf
min_asf_idx = numpy.argmin(asf, axis=1)
return fitnesses[min_asf_idx, :]
def find_intercepts(extreme_points, best_point, current_worst, front_worst):
"""Find intercepts between the hyperplane and each axis with
the ideal point as origin."""
# Construct hyperplane sum(f_i^n) = 1
b = numpy.ones(extreme_points.shape[1])
A = extreme_points - best_point
try:
x = numpy.linalg.solve(A, b)
except numpy.linalg.LinAlgError:
intercepts = current_worst
else:
intercepts = 1 / x
if (not numpy.allclose(numpy.dot(A, x), b) or
numpy.any(intercepts <= 1e-6) or
numpy.any((intercepts + best_point) > current_worst)):
intercepts = front_worst
return intercepts
def associate_to_niche(fitnesses, reference_points, best_point, intercepts):
"""Associates individuals to reference points and calculates niche number.
Corresponds to Algorithm 3 of Deb & Jain (2014)."""
# Normalize by ideal point and intercepts
fn = (fitnesses - best_point) / (intercepts - best_point)
# Create distance matrix
fn = numpy.repeat(numpy.expand_dims(fn, axis=1), len(reference_points), axis=1)
norm = numpy.linalg.norm(reference_points, axis=1)
distances = numpy.sum(fn * reference_points, axis=2) / norm.reshape(1, -1)
distances = distances[:, :, numpy.newaxis] * reference_points[numpy.newaxis, :, :] / norm[numpy.newaxis, :, numpy.newaxis]
distances = numpy.linalg.norm(distances - fn, axis=2)
# Retrieve min distance niche index
niches = numpy.argmin(distances, axis=1)
distances = distances[range(niches.shape[0]), niches]
return niches, distances
def niching(individuals, k, niches, distances, niche_counts):
selected = []
available = numpy.ones(len(individuals), dtype=numpy.bool)
while len(selected) < k:
# Maximum number of individuals (niches) to select in that round
n = k - len(selected)
# Find the available niches and the minimum niche count in them
available_niches = numpy.zeros(len(niche_counts), dtype=numpy.bool)
available_niches[numpy.unique(niches[available])] = True
min_count = numpy.min(niche_counts[available_niches])
# Select at most n niches with the minimum count
selected_niches = numpy.flatnonzero(numpy.logical_and(available_niches, niche_counts == min_count))
numpy.random.shuffle(selected_niches)
selected_niches = selected_niches[:n]
for niche in selected_niches:
# Find the individuals associated with this niche
niche_individuals = numpy.flatnonzero(niches == niche)
numpy.random.shuffle(niche_individuals)
# If no individual in that niche, select the closest to reference
# Else select randomly
if niche_counts[niche] == 0:
sel_index = niche_individuals[numpy.argmin(distances[niche_individuals])]
else:
sel_index = niche_individuals[0]
# Update availability, counts and selection
available[sel_index] = False
niche_counts[niche] += 1
selected.append(individuals[sel_index])
return selected
def uniform_reference_points(nobj, p=4, scaling=None):
"""Generate reference points uniformly on the hyperplane intersecting
each axis at 1. The scaling factor is used to combine multiple layers of
reference points.
"""
def gen_refs_recursive(ref, nobj, left, total, depth):
points = []
if depth == nobj - 1:
ref[depth] = left / total
points.append(ref)
else:
for i in range(left + 1):
ref[depth] = i / total
points.extend(gen_refs_recursive(ref.copy(), nobj, left - i, total, depth + 1))
return points
ref_points = numpy.array(gen_refs_recursive(numpy.zeros(nobj), nobj, p, p, 0))
if scaling is not None:
ref_points *= scaling
ref_points += (1 - scaling) / nobj
return ref_points
######################################
# Strength Pareto (SPEA-II) #
######################################
def selSPEA2(individuals, k):
"""Apply SPEA-II selection operator on the *individuals*. Usually, the
size of *individuals* will be larger than *n* because any individual
present in *individuals* will appear in the returned list at most once.
Having the size of *individuals* equals to *n* will have no effect other
than sorting the population according to a strength Pareto scheme. The
list returned contains references to the input *individuals*. For more
details on the SPEA-II operator see [Zitzler2001]_.
:param individuals: A list of individuals to select from.
:param k: The number of individuals to select.
:returns: A list of selected individuals.
.. [Zitzler2001] Zitzler, Laumanns and Thiele, "SPEA 2: Improving the
strength Pareto evolutionary algorithm", 2001.
"""
N = len(individuals)
L = len(individuals[0].fitness.values)
K = math.sqrt(N)
strength_fits = [0] * N
fits = [0] * N
dominating_inds = [list() for i in xrange(N)]
for i, ind_i in enumerate(individuals):
for j, ind_j in enumerate(individuals[i+1:], i+1):
if ind_i.fitness.dominates(ind_j.fitness):
strength_fits[i] += 1
dominating_inds[j].append(i)
elif ind_j.fitness.dominates(ind_i.fitness):
strength_fits[j] += 1
dominating_inds[i].append(j)
for i in xrange(N):
for j in dominating_inds[i]:
fits[i] += strength_fits[j]
# Choose all non-dominated individuals
chosen_indices = [i for i in xrange(N) if fits[i] < 1]
if len(chosen_indices) < k: # The archive is too small
for i in xrange(N):
distances = [0.0] * N
for j in xrange(i + 1, N):
dist = 0.0
for l in xrange(L):
val = individuals[i].fitness.values[l] - \
individuals[j].fitness.values[l]
dist += val * val
distances[j] = dist
kth_dist = _randomizedSelect(distances, 0, N - 1, K)
density = 1.0 / (kth_dist + 2.0)
fits[i] += density
next_indices = [(fits[i], i) for i in xrange(N)
if not i in chosen_indices]
next_indices.sort()
#print next_indices
chosen_indices += [i for _, i in next_indices[:k - len(chosen_indices)]]
elif len(chosen_indices) > k: # The archive is too large
N = len(chosen_indices)
distances = [[0.0] * N for i in xrange(N)]
sorted_indices = [[0] * N for i in xrange(N)]
for i in xrange(N):
for j in xrange(i + 1, N):
dist = 0.0
for l in xrange(L):
val = individuals[chosen_indices[i]].fitness.values[l] - \
individuals[chosen_indices[j]].fitness.values[l]
dist += val * val
distances[i][j] = dist
distances[j][i] = dist
distances[i][i] = -1
# Insert sort is faster than quick sort for short arrays
for i in xrange(N):
for j in xrange(1, N):
l = j
while l > 0 and distances[i][j] < distances[i][sorted_indices[i][l - 1]]:
sorted_indices[i][l] = sorted_indices[i][l - 1]
l -= 1
sorted_indices[i][l] = j
size = N
to_remove = []
while size > k:
# Search for minimal distance
min_pos = 0
for i in xrange(1, N):
for j in xrange(1, size):
dist_i_sorted_j = distances[i][sorted_indices[i][j]]
dist_min_sorted_j = distances[min_pos][sorted_indices[min_pos][j]]
if dist_i_sorted_j < dist_min_sorted_j:
min_pos = i
break
elif dist_i_sorted_j > dist_min_sorted_j:
break
# Remove minimal distance from sorted_indices
for i in xrange(N):
distances[i][min_pos] = float("inf")
distances[min_pos][i] = float("inf")
for j in xrange(1, size - 1):
if sorted_indices[i][j] == min_pos:
sorted_indices[i][j] = sorted_indices[i][j + 1]
sorted_indices[i][j + 1] = min_pos
# Remove corresponding individual from chosen_indices
to_remove.append(min_pos)
size -= 1
for index in reversed(sorted(to_remove)):
del chosen_indices[index]
return [individuals[i] for i in chosen_indices]
def _randomizedSelect(array, begin, end, i):
"""Allows to select the ith smallest element from array without sorting it.
Runtime is expected to be O(n).
"""
if begin == end:
return array[begin]
q = _randomizedPartition(array, begin, end)
k = q - begin + 1
if i < k:
return _randomizedSelect(array, begin, q, i)
else:
return _randomizedSelect(array, q + 1, end, i - k)
def _randomizedPartition(array, begin, end):
i = random.randint(begin, end)
array[begin], array[i] = array[i], array[begin]
return _partition(array, begin, end)
def _partition(array, begin, end):
x = array[begin]
i = begin - 1
j = end + 1
while True:
j -= 1
while array[j] > x:
j -= 1
i += 1
while array[i] < x:
i += 1
if i < j:
array[i], array[j] = array[j], array[i]
else:
return j
__all__ = ['selNSGA2', 'selNSGA3', 'selNSGA3WithMemory', 'selSPEA2', 'sortNondominated', 'sortLogNondominated',
'selTournamentDCD', 'uniform_reference_points']