Skip to content

IPDreamer: Appearance-Controllable 3D Object Generation with Complex Image Prompts

License

Notifications You must be signed in to change notification settings

zengbohan0217/IPDreamer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IPDreamer: Appearance-Controllable 3D Object Generation with Complex Image Prompts

The following content includes the environment installing of IPDreamer, training and testing commands, as well as a demonstration of the results.



The paper of IPDreamer can be referred to in the arxiv

Install

Install with pip

pip install -r requirements.txt

Download pre-trained models

To use image-conditioned 3D generation, you need to download some pretrained checkpoints manually:

  • Zero-1-to-3 for diffusion backend. It is hard-coded in guidance/zero123_utils.py.
    cd pretrained/zero123
    wget https://zero123.cs.columbia.edu/assets/zero123-xl.ckpt
  • Omnidata for depth and normal prediction. These ckpts are hardcoded in preprocess_image.py.
    mkdir pretrained/omnidata
    cd pretrained/omnidata
    # assume gdown is installed
    gdown '1Jrh-bRnJEjyMCS7f-WsaFlccfPjJPPHI&confirm=t' # omnidata_dpt_depth_v2.ckpt
    gdown '1wNxVO4vVbDEMEpnAi_jwQObf2MFodcBR&confirm=t' # omnidata_dpt_normal_v2.ckpt
  • IP-Adapter for image prompts.
    mkdir IP-Adapter
    cd IP-Adapter
    git lfs install
    git clone https://huggingface.co/h94/IP-Adapter
    GIT_LFS_SKIP_SMUDGE=1

For DMTet, we port the pre-generated 32/64/128 resolution tetrahedron grids under tets. The 256 resolution one can be found here.

Build extension (optional)

By default, we use load to build the extension at runtime. We also provide the setup.py to build each extension:

cd stable-dreamfusion

# install all extension modules
bash scripts/install_ext.sh

# if you want to install manually, here is an example:
pip install ./raymarching # install to python path (you still need the raymarching/ folder, since this only installs the built extension.)

Taichi backend (optional)

Use Taichi backend for Instant-NGP. It achieves comparable performance to CUDA implementation while No CUDA build is required. Install Taichi with pip:

pip install -i https://pypi.taichi.graphics/simple/ taichi-nightly

Trouble Shooting:

  • we assume working with the latest version of all dependencies, if you meet any problems from a specific dependency, please try to upgrade it first (e.g., pip install -U diffusers). If the problem still holds, reporting a bug issue will be appreciated!
  • [F glutil.cpp:338] eglInitialize() failed Aborted (core dumped): this usually indicates problems in OpenGL installation. Try to re-install Nvidia driver, or use nvidia-docker as suggested in ashawkey/stable-dreamfusion#131 if you are using a headless server.
  • TypeError: xxx_forward(): incompatible function arguments: this happens when we update the CUDA source and you used setup.py to install the extensions earlier. Try to re-install the corresponding extension (e.g., pip install ./gridencoder).

Training

Training command for scribble-guided 3D object generation.

# obtain inference image
python obtain_IPadapter_image.py --text 'A car made out of sushi' --out_path data/IPDreamer/sushi_car_scribble/v1/ --scribble_img_path data/scribble_sample/sushi_car/v1.png

# obtain normal and depth image
python preprocess_image.py --path 'data/IPDreamer/sushi_car_scribble/v1/reference.png'

# NeRF stage
## zero123
python main_v1.py -O --image data/IPDreamer/sushi_car_scribble/v1/reference_rgba.png --workspace output/trial_zero123 --iters 5000 --zero123_ckpt pretrained/zero123/zero123-xl.ckpt --sd_version 2.1

# mesh stage
## geometry
python main_v1.py -O --text "A car made out of sushi" --workspace output/trial_dmtet_geo --dmtet --iters 10000 --init_with output/trial_zero123/checkpoints/df.pth --sd_version 2.1 --ip_adapter --ip_adapter_ref_img data/IPDreamer/sushi_car_scribble/v1/reference_normal.png --ip_adapter_ang_scal 180 --ip_adapter_sds_epoch 0 --lambda_normal 1 --ip_adapter_cfg 100 --guidance_scale 100 --ip_adapter_geometry --guidance KKK
## texture
python main_v1.py -O --text "A car made out of sushi" --workspace output/trial_dmtet_tex --dmtet --iters 15000 --init_with output/trial_dmtet_geo/checkpoints/df.pth --sd_version 2.1 --ip_adapter --ip_adapter_ref_img data/IPDreamer/sushi_car_scribble/v1/reference.png --ip_adapter_ang_scal 180 --ip_adapter_sds_epoch 0 --lambda_normal 1 --ip_adapter_cfg 100 --guidance_scale 100 --ip_adapter_prompt_delta --guidance KKK

Training command for 3D object texture editing.

# obtain inference image
python obtain_IPadapter_image.py --text 'A high-quality shoe' --out_path data/IPDreamer/shoe_scribble/v1/ --scribble_img_path data/scribble_sample/shoe/v1.png

# obtain normal and depth image
python preprocess_image.py --path 'data/IPDreamer/shoe_scribble/v1/reference.png'

# NeRF stage
## zero123
python main_v1.py -O --image data/IPDreamer/shoe_scribble/v1/reference_rgba.png --workspace output/trial_zero123 --iters 5000 --zero123_ckpt pretrained/zero123/zero123-xl.ckpt --sd_version 2.1

# 3D Edit
## obtain normal and depth image
python preprocess_image.py --path 'data/scribble_sample/shoe/shoe1/reference.png'
## geometry
python main_v1.py -O --text "A high-quality shoe" --workspace output/trial_dmtet_geo --dmtet --iters 10000 --init_with output/trial_zero123/checkpoints/df.pth --sd_version 2.1 --ip_adapter --ip_adapter_ref_img data/scribble_sample/shoe/shoe1/reference_normal.png --ip_adapter_ang_scal 180 --ip_adapter_sds_epoch 0 --lambda_normal 1 --ip_adapter_cfg 100 --guidance_scale 100 --ip_adapter_geometry --guidance KKK
## texture
python main_v1.py -O --text "A high-quality shoe" --workspace output/trial_dmtet_tex --dmtet --iters 15000 --init_with output/trial_dmtet_geo/checkpoints/df.pth --sd_version 2.1 --ip_adapter --ip_adapter_ref_img data/scribble_sample/shoe/shoe1/reference.png --ip_adapter_ang_scal 180 --ip_adapter_sds_epoch 0 --lambda_normal 1 --ip_adapter_cfg 100 --guidance_scale 100 --ip_adapter_prompt_delta --guidance KKK

Evalutation

Visualize the 3D object generated by IPDreamer.

python CUDA_VISIBLE_DEVICES=7 python test_v1.py --init_with output/trial_dmtet_tex/checkpoints/df.pth --dmtet --lambda_normal 1 --default_radius 2.8 --default_azimuth -45 --default_polar 80 --ip_video 

Citation

If you find this code/paper useful, please consider citing:

@article{zeng2023ipdreamer,
  title={Ipdreamer: Appearance-controllable 3d object generation with image prompts},
  author={Zeng, Bohan and Li, Shanglin and Feng, Yutang and Yang, Ling and Li, Hong and Gao, Sicheng and Liu, Jiaming and He, Conghui and Zhang, Wentao and Liu, Jianzhuang and Zhang, Baochang and Yan, Shuicheng},
  journal={arXiv preprint arXiv:2310.05375},
  year={2023}
}

About

IPDreamer: Appearance-Controllable 3D Object Generation with Complex Image Prompts

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •