forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbench_glm.py
58 lines (41 loc) · 1.46 KB
/
bench_glm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""
A comparison of different methods in GLM
Data comes from a random square matrix.
"""
from datetime import datetime
import numpy as np
from sklearn import linear_model
from sklearn.utils.bench import total_seconds
if __name__ == '__main__':
import pylab as pl
n_iter = 40
time_ridge = np.empty(n_iter)
time_ols = np.empty(n_iter)
time_lasso = np.empty(n_iter)
dimensions = 500 * np.arange(1, n_iter + 1)
for i in range(n_iter):
print('Iteration %s of %s' % (i, n_iter))
n_samples, n_features = 10 * i + 3, 10 * i + 3
X = np.random.randn(n_samples, n_features)
Y = np.random.randn(n_samples)
start = datetime.now()
ridge = linear_model.Ridge(alpha=1.)
ridge.fit(X, Y)
time_ridge[i] = total_seconds(datetime.now() - start)
start = datetime.now()
ols = linear_model.LinearRegression()
ols.fit(X, Y)
time_ols[i] = total_seconds(datetime.now() - start)
start = datetime.now()
lasso = linear_model.LassoLars()
lasso.fit(X, Y)
time_lasso[i] = total_seconds(datetime.now() - start)
pl.figure('scikit-learn GLM benchmark results')
pl.xlabel('Dimensions')
pl.ylabel('Time (s)')
pl.plot(dimensions, time_ridge, color='r')
pl.plot(dimensions, time_ols, color='g')
pl.plot(dimensions, time_lasso, color='b')
pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left')
pl.axis('tight')
pl.show()