Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang
IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CVPR 2019
THIS WORK IS BUILT UPON OUR PREVIOUS WORK CALLED MEMC-NET, IN WHICH WE PROPOSE THE ADAPTIVE WARPING LAYER. PLEASE ALSO CONSIDER CITING MEMC-NET.
- Introduction
- Citation
- Requirements and Dependencies
- Installation
- Testing Pre-trained Models
- Downloading Results
- Slow-motion Generation
- Training New Models
We propose the Depth-Aware video frame INterpolation (DAIN) model to explicitly detect the occlusion by exploring the depth cue. We develop a depth-aware flow projection layer to synthesize intermediate flows that preferably sample closer objects than farther ones. Our method achieves state-of-the-art performance on the Middlebury dataset. We provide videos here.
If you find the code and datasets useful in your research, please cite:
@inproceedings{DAIN,
author = {Bao, Wenbo and Lai, Wei-Sheng and Ma, Chao and Zhang, Xiaoyun and Gao, Zhiyong and Yang, Ming-Hsuan},
title = {Depth-Aware Video Frame Interpolation},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
year = {2019}
}
- Ubuntu (We test with Ubuntu = 16.04.5 LTS)
- Python (We test with Python = 3.6.8 in Anaconda3 = 4.1.1)
- Cuda & Cudnn (We test with Cuda = 9.0 and Cudnn = 7.0)
- PyTorch (The customized depth-aware flow projection and other layers require ATen API in PyTorch = 1.0.0)
- GCC (Compiling PyTorch 1.0.0 extension files (.c/.cu) requires gcc = 4.9.1 and nvcc = 9.0 compilers)
- NVIDIA GPU (We use Titan X (Pascal) with compute = 6.1, but we support compute_50/52/60/61 devices, should you have devices with higher compute capability, please revise this)
Download repository:
$ git clone https://github.com/baowenbo/DAIN.git
Before building Pytorch extensions, be sure you have pytorch >= 1.0.0
:
$ python -c "import torch; print(torch.__version__)"
Generate our PyTorch extensions:
$ cd DAIN
$ cd my_package
$ ./build.sh
Generate the Correlation package required by PWCNet:
$ cd ../PWCNet/correlation_package_pytorch1_0
$ ./build.sh
Make model weights dir and Middlebury dataset dir:
$ cd DAIN
$ mkdir model_weights
$ mkdir MiddleBurySet
Download pretrained models,
$ cd model_weights
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/best.pth
and Middlebury dataset:
$ cd ../MiddleBurySet
$ wget http://vision.middlebury.edu/flow/data/comp/zip/other-color-allframes.zip
$ unzip other-color-allframes.zip
$ wget http://vision.middlebury.edu/flow/data/comp/zip/other-gt-interp.zip
$ unzip other-gt-interp.zip
$ cd ..
We are good to go by:
$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury.py
The interpolated results are under MiddleBurySet/other-result-author/[random number]/
, where the random number
is used to distinguish different runnings.
Our DAIN model achieves the state-of-the-art performance on the UCF101, Vimeo90K, and Middlebury (eval and other). Dowload our interpolated results with:
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/UCF101_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Vimeo90K_interp_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Middlebury_eval_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Middlebury_other_DAIN.zip
Our model is fully capable of generating slow-motion effect with minor modification on the network architecture.
Run the following code by specifying time_step = 0.25
to generate x4 slow-motion effect:
$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.25
or set time_step
to 0.125
or 0.1
as follows
$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.125
$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.1
to generate x8 and x10 slow-motion respectively. Or if you would like to have x100 slow-motion for a little fun.
$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.01
You may also want to create gif animations by:
$ cd MiddleBurySet/other-result-author/[random number]/Beanbags
$ convert -delay 1 *.png -loop 0 Beanbags.gif //1*10ms delay
Have fun and enjoy yourself!
Download the Vimeo90K triplet dataset for video frame interpolation task, also see here by Xue et al., IJCV19.
$ cd DAIN
$ mkdir /path/to/your/dataset & cd /path/to/your/dataset
$ wget http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip
$ unzip vimeo_triplet.zip
$ rm vimeo_triplet.zip
Download the pretrained MegaDepth and PWCNet models
$ cd MegaDepth/checkpoints/test_local
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/best_generalization_net_G.pth
$ cd ../../../PWCNet
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/pwc_net.pth.tar
$ cd ..
Run the training script:
$ CUDA_VISIBLE_DEVICES=0 python train.py --datasetPath /path/to/your/dataset --batch_size 1 --save_which 1 --lr 0.0001 --rectify_lr 0.0001 --flow_lr_coe 0.01 --occ_lr_coe 0.0 --filter_lr_coe 1.0 --ctx_lr_coe 1.0 --alpha 0.0 1.0 --patience 4 --factor 0.2
The optimized models will be saved to the model_weights/[random number]
directory, where [random number] is generated for different runs.
Replace the pre-trained model_weights/best.pth
model with the newly trained model_weights/[random number]/best.pth
model.
Then test the new model by executing:
$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury.py
Wenbo Bao; Wei-Sheng (Jason) Lai
See MIT License