-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
176 lines (146 loc) · 7.55 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# from torch.nn.modules.module import _IncompatibleKeys
import torch
from utils.util import EarlyStopping, save_file, set_gpu_devices, pause, set_seed
import os
from utils.logger import logger
import time
import logging
import argparse
import os.path as osp
import numpy as np
parser = argparse.ArgumentParser(description="GCN train parameter")
parser.add_argument("-v", type=str, required=True, help="version")
parser.add_argument("-bs", type=int, action="store", help="BATCH_SIZE", default=256)
parser.add_argument("-lr", type=float, action="store", help="learning rate", default=1e-4)
parser.add_argument("-epoch", type=int, action="store", help="epoch for train", default=60)
parser.add_argument("-nfs", action="store_true", help="use local ssd")
parser.add_argument("-gpu", type=int, help="set gpu id", default=0)
parser.add_argument("-ans_num", type=int, help="ans vocab num", default=1852)
parser.add_argument("-es", action="store_true", help="early_stopping")
parser.add_argument("-hd", type=int, help="hidden dim of vq encoder", default=512)
parser.add_argument("-wd", type=int, help="word dim of q encoder", default=512)
parser.add_argument("-drop", type=float, help="dropout rate", default=0.5)
parser.add_argument("-tau", type=float, help="gumbel tamper", default=1)
parser.add_argument("-ln", type=int, help="number of layers", default=1)
parser.add_argument("-pa", type=int, help="patience of ReduceonPleatu", default=5)
parser.add_argument("-a", type=float, help="ratio on L2", default=1)
parser.add_argument("-b", type=float, help="ratio on L3", default=1)
parser.add_argument('-dataset', default='msvd-qa',choices=['msrvtt-qa', 'msvd-qa'], type=str)
parser.add_argument('-app_feat', default='res152', choices=['resnet', 'res152'], type=str)
parser.add_argument('-mot_feat', default='3dres152', choices=['resnext', '3dres152'], type=str)
args = parser.parse_args()
set_gpu_devices(args.gpu)
set_seed(999)
args = parser.parse_args()
set_gpu_devices(args.gpu)
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from networks.embed_loss import MultipleChoiceLoss
from networks.hga import HGA
from dataloader.dataset import VideoQADataset
seed = 999
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
torch.set_printoptions(linewidth=200)
np.set_printoptions(edgeitems=30, linewidth=30, formatter=dict(float=lambda x: "%.3g" % x))
def train(model, optimizer, train_loader, ce, kl_mb, kl_b, device):
model.train()
total_step = len(train_loader)
epoch_loss = 0.0
epoch_ce_loss = 0.0
epoch_kl_loss = 0.0
epoch_klb_loss = 0.0
prediction_list = []
answer_list = []
for iter, inputs in enumerate(train_loader):
videos, qas, qas_lengths, answers, qns_id, vid_idx = inputs
video_inputs = videos.to(device)
qas_inputs = qas.to(device)
ans_targets = answers.to(device)
qas_lengths = qas_lengths.to(device)
vid_idx = vid_idx.to(device)
out_f, out_m,out_b = model(video_inputs, qas_inputs, qas_lengths, vid_idx)
model.zero_grad()
ce_loss = ce(out_f, ans_targets)
kl_loss = kl_mb(F.log_softmax(out_m, dim=1), F.softmax(out_f, dim=1))
klb_loss = kl_b(F.log_softmax(out_b, dim=1), out_b.new_ones(out_b.size())/(args.ans_num+1))
loss = ce_loss + args.a*kl_loss + args.b*klb_loss
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_ce_loss += ce_loss.item()
epoch_kl_loss += args.a*kl_loss.item()
epoch_klb_loss += args.b*klb_loss.item()
prediction=out_f.max(-1)[1] # bs,
prediction_list.append(prediction)
answer_list.append(answers)
predict_answers = torch.cat(prediction_list, dim=0).long().cpu()
ref_answers = torch.cat(answer_list, dim=0).long()
acc_num = torch.sum(predict_answers==ref_answers).numpy()
return epoch_loss / total_step, epoch_ce_loss/ total_step, epoch_kl_loss/ total_step,epoch_klb_loss/total_step, acc_num*100.0 / len(ref_answers)
def eval(model, val_loader, device):
model.eval()
prediction_list = []
answer_list = []
with torch.no_grad():
for iter, inputs in enumerate(val_loader):
videos, qas, qas_lengths, answers, _, vid_idx = inputs
video_inputs = videos.to(device)
qas_inputs = qas.to(device)
qas_lengths = qas_lengths.to(device)
vid_idx = vid_idx.to(device)
out, _, _ = model(video_inputs, qas_inputs, qas_lengths,vid_idx)
prediction=out.max(-1)[1] # bs,
prediction_list.append(prediction)
answer_list.append(answers)
predict_answers = torch.cat(prediction_list, dim=0).long().cpu()
ref_answers = torch.cat(answer_list, dim=0).long()
acc_num = torch.sum(predict_answers==ref_answers).numpy()
return acc_num*100.0 / len(ref_answers)
if __name__ == "__main__":
logger, sign =logger(args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sample_list_path = '/storage_fast/ycli/vqa/qa_dataset'
video_feature_path= '/storage_fast/ycli/vqa/qa_feat'
train_dataset=VideoQADataset( sample_list_path, video_feature_path,'train',args)
val_dataset=VideoQADataset(sample_list_path, video_feature_path, 'val',args)
test_dataset=VideoQADataset( sample_list_path, video_feature_path,'test',args)
train_loader = DataLoader(dataset=train_dataset,batch_size=args.bs,shuffle=True,num_workers=8,pin_memory=True)
val_loader = DataLoader(dataset=val_dataset,batch_size=args.bs,shuffle=False,num_workers=8,pin_memory=True)
test_loader = DataLoader(dataset=test_dataset,batch_size=args.bs,shuffle=False,num_workers=8,pin_memory=True)
# hyper setting
lr_rate = args.lr
epoch_num = args.epoch
mem_bank = torch.cat((torch.Tensor(train_dataset.app), torch.Tensor(train_dataset.mot)), dim=-1)
model = HGA(args.ans_num, args.hd, args.wd, args.drop, args.tau, args.ln ,memory=mem_bank)
optimizer = torch.optim.Adam(params = [{'params':model.parameters()}], lr=lr_rate)
scheduler = ReduceLROnPlateau(optimizer, 'max', factor=0.5, patience=args.pa, verbose=True)
model.to(device)
ce = nn.CrossEntropyLoss().to(device)
kl_mb = nn.KLDivLoss(reduction='batchmean').to(device)
kl_b = nn.KLDivLoss(reduction='batchmean').to(device)
# train & val
best_eval_score = 0.0
best_epoch=1
for epoch in range(1, epoch_num+1):
train_loss, ce_loss, kl_loss, klb_loss, train_acc = train(model, optimizer, train_loader, ce, kl_mb, kl_b, device)
# print(ce_loss)
eval_score = eval(model, val_loader, device)
scheduler.step(eval_score)
if eval_score > best_eval_score:
best_eval_score = eval_score
best_epoch = epoch
best_model_path='./models/best_model-{}.ckpt'.format(sign)
torch.save(model.state_dict(), best_model_path)
logger.debug("==>Epoch:[{}/{}][LR{}][Train Loss: {:.4f} CE Loss: {:.4f} KL Loss: {:.4f} KLB Loss: {:.4f} Train acc: {:.2f} Val acc: {:.2f}".
format(epoch, epoch_num, optimizer.param_groups[0]['lr'], train_loss, ce_loss, kl_loss, klb_loss, train_acc, eval_score))
logger.debug("Epoch {} Best Val acc{:.2f}".format(best_epoch, best_eval_score))
# predict with best model
model.load_state_dict(torch.load(best_model_path))
test_acc=eval(model, test_loader, device)
logger.debug("Test acc{:.2f} on {} epoch".format(test_acc, best_epoch))