Skip to content

Borrows code from RankGPT repo to expand LLM reranking to other LLMs (Vicuna) and Prompt generation methods (LRL, etc)

License

Notifications You must be signed in to change notification settings

yilinjz/rank_llm

 
 

Repository files navigation

RankLLM

PyPI Downloads Downloads Generic badge LICENSE

We offer a suite of prompt decoders, albeit with a current focus on RankVicuna. Some of the code in this repository is borrowed from RankGPT!

Releases

current_version = 0.2.6

📟 Instructions

Create Conda Environment

conda create -n rankllm python=3.10
conda activate rankllm

Install Pytorch with CUDA

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

Install Dependencies

pip install -r requirements.txt

Run end to end Test

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/rank_zephyr_7b_v1_full --top_k_candidates=100 --dataset=dl20 \
--retrieval_method=SPLADE++_EnsembleDistil_ONNX --prompt_mode=rank_GPT  --context_size=4096 --variable_passages

Contributing

If you would like to contribute to the project, please refer to the contribution guidelines.

🦙🐧 Model Zoo

The following is a table of our models hosted on HuggingFace:

Model Name Hugging Face Identifier/Link
RankZephyr 7B V1 - Full - BF16 castorini/rank_zephyr_7b_v1_full
RankVicuna 7B - V1 castorini/rank_vicuna_7b_v1
RankVicuna 7B - V1 - No Data Augmentation castorini/rank_vicuna_7b_v1_noda
RankVicuna 7B - V1 - FP16 castorini/rank_vicuna_7b_v1_fp16
RankVicuna 7B - V1 - No Data Augmentation - FP16 castorini/rank_vicuna_7b_v1_noda_fp16

✨ References

If you use RankLLM, please cite the following relevant papers:

[2309.15088] RankVicuna: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models

@ARTICLE{pradeep2023rankvicuna,
  title   = {{RankVicuna}: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2309.15088}
}

[2312.02724] RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!

@ARTICLE{pradeep2023rankzephyr,
  title   = {{RankZephyr}: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2312.02724}
}

🙏 Acknowledgments

This research is supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

About

Borrows code from RankGPT repo to expand LLM reranking to other LLMs (Vicuna) and Prompt generation methods (LRL, etc)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%