forked from hyowonwi/CTA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_model.py
268 lines (196 loc) · 10.5 KB
/
make_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
import torchcde
def make_model(config):
if config.model.model_type == 'VAE':
model = VAE(config)
elif config.model.model_type == 'AE':
model = AE(config)
elif config.model.model_type in ['AE_AE', 'VAE_AE']:
model = CTA(config)
return model
def augment_time(data, feature_num):
if data.shape[-1] == feature_num * 4: # if coeffs
interpolated_path = torchcde.CubicSpline(data)
data = interpolated_path.evaluate(interpolated_path.grid_points)
batch_size, seq_len, _ = data.shape
time_step = (torch.linspace(0, seq_len, seq_len) / seq_len).repeat(batch_size, 1).unsqueeze(-1).to(data.device)
data_w_time = torch.cat([time_step, data], dim=-1)
coeffs_w_time = torchcde.natural_cubic_coeffs(data_w_time)
return coeffs_w_time
class Encoder(torch.nn.Module):
def __init__(self, config, input_channels, hidden_channels, hidden_hidden_channels, num_layers):
super(Encoder, self).__init__()
self.input_channels = input_channels
self.hidden_channels = hidden_channels
self.latent_channels = hidden_channels // 2 # hidden = latent * 2
self.hidden_hidden_channels = hidden_hidden_channels
cde_func = torch.nn.ModuleList([torch.nn.Linear(hidden_channels, hidden_hidden_channels), torch.nn.SiLU()])
for _ in range(num_layers):
cde_func.append(torch.nn.Linear(hidden_hidden_channels, hidden_hidden_channels))
cde_func.append(torch.nn.SiLU())
self.func = torch.nn.Sequential(
*cde_func,
)
self.mu = torch.nn.Linear(hidden_hidden_channels, self.latent_channels * input_channels)
self.sigma = torch.nn.Linear(hidden_hidden_channels, self.latent_channels * input_channels)
def forward(self, t, z):
enc = self.func(z)
z = torch.cat([self.mu(enc), self.sigma(enc)], dim=1)
z = z.tanh()
z = z.view(*z.shape[:-1], self.hidden_channels, self.input_channels)
return z
class CDEfunc(torch.nn.Module):
def __init__(self, config, input_channels, hidden_channels, hidden_hidden_channels, num_layers):
super(CDEfunc, self).__init__()
self.config = config
self.input_channels = input_channels
self.hidden_channels = hidden_channels
self.hidden_hidden_channels = hidden_hidden_channels
cde_func = torch.nn.ModuleList([torch.nn.Linear(hidden_channels, hidden_hidden_channels), torch.nn.SiLU()])
for _ in range(num_layers):
cde_func.append(torch.nn.Linear(hidden_hidden_channels, hidden_hidden_channels))
cde_func.append(torch.nn.SiLU())
self.func = torch.nn.Sequential(
*cde_func,
torch.nn.Linear(hidden_hidden_channels, hidden_channels * input_channels)
)
def forward(self, t, z):
z = self.func(z)
z = z.tanh()
z = z.view(*z.shape[:-1], self.hidden_channels, self.input_channels)
return z
class AE(torch.nn.Module):
def __init__(self, config, hidden_channels, latent_channels, num_layers, step_size):
super(AE, self).__init__()
self.config = config
self.seq_len = config.data.seq_len
self.feature_num = config.data.feature_num
self.input_channels = config.data.feature_num + 1 # time augment
self.hidden_channels = hidden_channels
self.latent_channels = latent_channels
self.output_channels = config.data.feature_num
self.num_layers = num_layers
# initial z0
self.initial_encoder = torch.nn.Linear(self.input_channels, self.latent_channels)
self.initial_decoder = torch.nn.Linear(self.input_channels, self.output_channels)
# cde function
self.func_encoder = CDEfunc(config, self.input_channels, self.latent_channels, self.hidden_channels, self.num_layers)
self.func_decoder = CDEfunc(config, self.latent_channels+1, self.output_channels, self.hidden_channels, self.num_layers)
# readout
self.readout_e_hat = torch.nn.Sequential(
torch.nn.Linear(self.output_channels, self.output_channels*4),
torch.nn.ELU(),
torch.nn.Linear(self.output_channels*4, self.output_channels)
)
# cdeint argument
self.step_size = step_size
self.atol = config.training.atol
self.rtol = config.training.rtol
self.solver = config.training.solver
self.options = {"step_size":self.step_size}
def get_initial_value(self, X0):
z_encoder = self.initial_encoder(X0)
z_decoder = self.initial_decoder(X0)
return (z_encoder, z_decoder)
def forward(self, coeffs, repalce_value=None, is_test=None):
coeffs = augment_time(coeffs, self.feature_num)
X = torchcde.CubicSpline(coeffs)
X0 = X.evaluate(X.interval[0])
z0 = self.get_initial_value(X0)
adjoint_params=tuple(self.func_encoder.parameters()) + tuple(self.func_decoder.parameters())
z_T = torchcde.cdeint_CVA(X=X, z0=z0,
func_encoder=self.func_encoder, func_decoder=self.func_decoder,
config=self.config,
t=X.grid_points,
submodel='AE',
atol=self.atol,rtol=self.rtol,
method=self.solver, options=self.options, adjoint_params=adjoint_params)
encode, decode = z_T
pred_y = self.readout_e_hat(decode) # ..., time_step, output_channels
if repalce_value is not None:
pred_y = repalce_value + pred_y
return (), pred_y, encode
class VAE(torch.nn.Module):
def __init__(self, config, hidden_channels, latent_channels, num_layers, step_size):
super(VAE, self).__init__()
self.config = config
self.seq_len = config.data.seq_len
self.feature_num = config.data.feature_num
self.input_channels = config.data.feature_num + 1 # time augment
self.hidden_channels = hidden_channels
self.latent_channels = latent_channels
self.output_channels = config.data.feature_num
self.num_layers = num_layers
# initial z0
self.initial_encoder = torch.nn.Linear(self.input_channels, self.latent_channels*2)
self.initial_decoder = torch.nn.Linear(self.input_channels, self.output_channels)
# cde function
self.func_encoder = Encoder(config, self.input_channels, self.latent_channels*2, self.hidden_channels, self.num_layers)
self.func_decoder = CDEfunc(config, self.latent_channels+1, self.output_channels, self.hidden_channels,self.num_layers)
self.readout_e_hat = torch.nn.Sequential(
torch.nn.Linear(self.output_channels, self.output_channels*4),
torch.nn.ELU(),
torch.nn.Linear(self.output_channels*4, self.output_channels)
)
# cdeint argument
self.atol = config.training.atol
self.rtol = config.training.rtol
self.solver = config.training.solver
self.step_size = step_size
self.options = {"step_size":self.step_size}
def get_initial_value(self, X0):
z_encoder = self.initial_encoder(X0)
z_decoder = self.initial_decoder(X0)
z_kld = torch.zeros_like(X0[:,0])
return (z_encoder, z_decoder, z_kld)
def forward(self, coeffs, repalce_value=None, is_test=None):
coeffs = augment_time(coeffs, self.feature_num)
X = torchcde.CubicSpline(coeffs)
X0 = X.evaluate(X.interval[0])
z0 = self.get_initial_value(X0)
adjoint_params=tuple(self.func_encoder.parameters()) + tuple(self.func_decoder.parameters())
z_T = torchcde.cdeint_CVA(X=X, z0=z0,
func_encoder=self.func_encoder, func_decoder=self.func_decoder,
config=self.config,
t=X.grid_points,
submodel='VAE_contKLD',
is_test=is_test,
atol=self.atol,rtol=self.rtol,
method=self.solver, options=self.options, adjoint_params=adjoint_params)
encode, decode, kld = z_T
kld = kld[:,-1]
pred_y = self.readout_e_hat(decode)
if repalce_value is not None:
pred_y = repalce_value + pred_y
return (), pred_y, kld
class CTA(torch.nn.Module):
def __init__(self, config):
super(CTA, self).__init__()
self.config = config
self.block_types = config.model.model_type.split('_')
if config.model.model_type == 'AE_AE':
self.FirstBlock = AE(config, config.model.first_hidden_channels, config.model.first_latent_channels, config.model.first_num_layers, config.model.first_step_size)
self.SecondBlock = AE(config, config.model.second_hidden_channels, config.model.second_latent_channels, config.model.second_num_layers, config.model.second_step_size)
elif config.model.model_type == 'VAE_AE':
self.FirstBlock = VAE(config, config.model.first_hidden_channels, config.model.first_latent_channels, config.model.first_num_layers, config.model.first_step_size)
self.SecondBlock = AE(config, config.model.second_hidden_channels, config.model.second_latent_channels, config.model.second_num_layers, config.model.second_step_size)
# self.FirstBlock,
feature_num = config.data.feature_num
second_latent_channels = config.model.second_latent_channels
self.weight_combine = torch.nn.Linear(feature_num + second_latent_channels, feature_num)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, coeffs, origin_X, M, is_test=None):
# First block
# if VAE, side_info is KLD
# if AE, side_info is encode
_, X_hat, side_info = self.FirstBlock.forward(coeffs, is_test=is_test)
if self.block_types[0] == 'AE':
# side info will be used as KLD
side_info = torch.zeros_like(side_info)
# replace first prediction
X_check = M * origin_X + (1 - M) * X_hat
# Second block
_, X_hat_prime, d_prime = self.SecondBlock.forward(X_check, repalce_value=X_check)
combining_weights = self.sigmoid(self.weight_combine(torch.cat([d_prime, M], dim=2))) # namely term alpha
X_tilde = combining_weights * X_hat + (1-combining_weights) * X_hat_prime
return (X_hat, X_hat_prime), X_tilde, side_info