-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset.py
221 lines (181 loc) · 7.82 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import tqdm
import numpy as np
import torch
import os
from scipy.sparse import csr_matrix
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
import random
class RecDataset(Dataset):
def __init__(self, args, user_seq, test_neg_items=None, data_type='train'):
self.args = args
self.user_seq = []
self.max_len = args.max_seq_length
self.user_ids = []
self.contrastive_learning = args.model_type.lower() in ['fearec', 'duorec']
self.data_type = data_type
if self.data_type=='train':
for user, seq in enumerate(user_seq):
input_ids = seq[-(self.max_len + 2):-2]
for i in range(len(input_ids)):
self.user_seq.append(input_ids[:i + 1])
self.user_ids.append(user)
elif self.data_type=='valid':
for sequence in user_seq:
self.user_seq.append(sequence[:-1])
else:
self.user_seq = user_seq
self.test_neg_items = test_neg_items
if self.contrastive_learning and self.data_type=='train':
if os.path.exists(args.same_target_path):
self.same_target_index = np.load(args.same_target_path, allow_pickle=True)
else:
print("Start making same_target_index for contrastive learning")
self.same_target_index = self.get_same_target_index()
self.same_target_index = np.array(self.same_target_index)
np.save(args.same_target_path, self.same_target_index)
def get_same_target_index(self):
num_items = max([max(v) for v in self.user_seq]) + 2
same_target_index = [[] for _ in range(num_items)]
user_seq = self.user_seq[:]
tmp_user_seq = []
for i in tqdm.tqdm(range(1, num_items)):
for j in range(len(user_seq)):
if user_seq[j][-1] == i:
same_target_index[i].append(user_seq[j])
else:
tmp_user_seq.append(user_seq[j])
user_seq = tmp_user_seq
tmp_user_seq = []
return same_target_index
def __len__(self):
return len(self.user_seq)
def __getitem__(self, index):
items = self.user_seq[index]
input_ids = items[:-1]
answer = items[-1]
seq_set = set(items)
neg_answer = neg_sample(seq_set, self.args.item_size)
pad_len = self.max_len - len(input_ids)
input_ids = [0] * pad_len + input_ids
input_ids = input_ids[-self.max_len:]
assert len(input_ids) == self.max_len
if self.data_type in ['valid', 'test']:
cur_tensors = (
torch.tensor(index, dtype=torch.long), # user_id for testing
torch.tensor(input_ids, dtype=torch.long),
torch.tensor(answer, dtype=torch.long),
torch.zeros(0, dtype=torch.long), # not used
torch.zeros(0, dtype=torch.long), # not used
)
elif self.contrastive_learning:
sem_augs = self.same_target_index[answer]
sem_aug = random.choice(sem_augs)
keep_random = False
for i in range(len(sem_augs)):
if sem_augs[0] != sem_augs[i]:
keep_random = True
while keep_random and sem_aug == items:
sem_aug = random.choice(sem_augs)
sem_aug = sem_aug[:-1]
pad_len = self.max_len - len(sem_aug)
sem_aug = [0] * pad_len + sem_aug
sem_aug = sem_aug[-self.max_len:]
assert len(sem_aug) == self.max_len
cur_tensors = (
torch.tensor(self.user_ids[index], dtype=torch.long), # user_id for testing
torch.tensor(input_ids, dtype=torch.long),
torch.tensor(answer, dtype=torch.long),
torch.tensor(neg_answer, dtype=torch.long),
torch.tensor(sem_aug, dtype=torch.long)
)
else:
cur_tensors = (
torch.tensor(self.user_ids[index], dtype=torch.long), # user_id for testing
torch.tensor(input_ids, dtype=torch.long),
torch.tensor(answer, dtype=torch.long),
torch.tensor(neg_answer, dtype=torch.long),
torch.zeros(0, dtype=torch.long), # not used
)
return cur_tensors
def neg_sample(item_set, item_size):
item = random.randint(1, item_size - 1)
while item in item_set:
item = random.randint(1, item_size - 1)
return item
def generate_rating_matrix_valid(user_seq, num_users, num_items):
# three lists are used to construct sparse matrix
row = []
col = []
data = []
for user_id, item_list in enumerate(user_seq):
for item in item_list[:-2]: #
row.append(user_id)
col.append(item)
data.append(1)
row = np.array(row)
col = np.array(col)
data = np.array(data)
rating_matrix = csr_matrix((data, (row, col)), shape=(num_users, num_items))
return rating_matrix
def generate_rating_matrix_test(user_seq, num_users, num_items):
# three lists are used to construct sparse matrix
row = []
col = []
data = []
for user_id, item_list in enumerate(user_seq):
for item in item_list[:-1]: #
row.append(user_id)
col.append(item)
data.append(1)
row = np.array(row)
col = np.array(col)
data = np.array(data)
rating_matrix = csr_matrix((data, (row, col)), shape=(num_users, num_items))
return rating_matrix
def get_rating_matrix(data_name, seq_dic, max_item):
num_items = max_item + 1
valid_rating_matrix = generate_rating_matrix_valid(seq_dic['user_seq'], seq_dic['num_users'], num_items)
test_rating_matrix = generate_rating_matrix_test(seq_dic['user_seq'], seq_dic['num_users'], num_items)
return valid_rating_matrix, test_rating_matrix
def get_user_seqs_and_max_item(data_file):
lines = open(data_file).readlines()
lines = lines[1:]
user_seq = []
item_set = set()
for line in lines:
user, items = line.strip().split(' ', 1)
items = items.split()
items = [int(item) for item in items]
user_seq.append(items)
item_set = item_set | set(items)
max_item = max(item_set)
return user_seq, max_item
def get_user_seqs(data_file):
lines = open(data_file).readlines()
user_seq = []
item_set = set()
for line in lines:
user, items = line.strip().split(' ', 1)
items = items.split(' ')
items = [int(item) for item in items]
user_seq.append(items)
item_set = item_set | set(items)
max_item = max(item_set)
num_users = len(lines)
return user_seq, max_item, num_users
def get_seq_dic(args):
args.data_file = args.data_dir + args.data_name + '.txt'
user_seq, max_item, num_users = get_user_seqs(args.data_file)
seq_dic = {'user_seq':user_seq, 'num_users':num_users }
return seq_dic, max_item, num_users
def get_dataloder(args,seq_dic):
train_dataset = RecDataset(args, seq_dic['user_seq'], data_type='train')
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.batch_size, num_workers=args.num_workers)
eval_dataset = RecDataset(args, seq_dic['user_seq'], data_type='valid')
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.batch_size, num_workers=args.num_workers)
test_dataset = RecDataset(args, seq_dic['user_seq'], data_type='test')
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.batch_size, num_workers=args.num_workers)
return train_dataloader, eval_dataloader, test_dataloader