Skip to content

An Attentive Inductive Bias for Sequential Recommendation beyond the Self-Attention, AAAI-24

Notifications You must be signed in to change notification settings

yehjin-shin/BSARec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

BSARec

This is the official source code for our AAAI 2024 Paper "An Attentive Inductive Bias for Sequential Recommendation beyond the Self-Attention"

Overview

Beyond Self-Attention for Sequential Recommendation (BSARec) leverages Fourier transform to strike a balance between our inductive bias and self-attention. BSARec

Updates

  • (Nov 12, 2024) add visulaization code for figure 2(b)
  • (Oct 18, 2024) correct default argument for layer-specific values in FEARec
  • (Oct 18, 2024) rename variables in model checkpoint
  • (Oct 18, 2024) organize layer classes within each model file
  • (Sep 14, 2024) add data processing code
  • (Apr 20, 2024) rename variable 'beta' to 'sqrt_beta'
  • (Apr 16, 2024) add visualization code for figure 3

Dataset

In our experiments, we utilize six datasets, all stored in the src/data folder.

  • For the Beauty, Sports, Toys, and Yelp datasets, we employed the datasets downloaded from this repository.
  • For ML-1M and LastFM, we processed the data according to the procedure outlined in this code.
  • The src/data/*_same_target.npy files are utilized for training DuoRec and FEARec, both of which incorporate contrastive learning.

Quick Start

Environment Setting

conda env create -f bsarec_env.yaml
conda activate bsarec

How to train BSARec

  • Note that pretrained model (.pt) and train log file (.log) will saved in src/output
  • train_name: name for log file and checkpoint file
python main.py  --data_name [DATASET] \
                --lr [LEARNING_RATE] \
                --alpha [ALPHA] \ 
                --c [C] \
                --num_attention_heads [N_HEADS] \
                --train_name [LOG_NAME]
  • Example for Beauty
python main.py  --data_name Beauty \
                --lr 0.0005 \
                --alpha 0.7 \
                --c 5 \
                --num_attention_heads 1 \
                --train_name BSARec_Beauty

How to test pretrained BSARec

  • Note that pretrained model (.pt file) must be in src/output
  • load_model: pretrained model name without .pt
python main.py  --data_name [DATASET] \
                --alpha [ALPHA] \ 
                --c [C] \
                --num_attention_heads [N_HEADS] \
                --load_model [PRETRAINED_MODEL_NAME] \
                --do_eval
  • Example for Beauty
python main.py  --data_name Beauty \
                --alpha 0.7 \
                --c 5 \
                --num_attention_heads 1 \
                --load_model BSARec_Beauty_best \
                --do_eval

How to train the baselines

  • You can easily train the baseline models used in BSARec by changing the model_type argument.
    • model_type: Caser, GRU4Rec, SASRec, BERT4Rec, FMLPRec, DuoRec, FEARec
  • For the hyperparameters for the baselines, check the parse_args() function in src/utils.py.
python main.py  --model_type SASRec \
                --data_name Beauty \
                --num_attention_heads 1 \
                --train_name SASRec_Beauty

Citation

If you find our work useful, please consider citing our paper:

@inproceedings{shin2024bsarec,
title={An attentive inductive bias for sequential recommendation beyond the self-attention},
author={Shin, Yehjin and Choi, Jeongwhan and Wi, Hyowon and Park, Noseong},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={38},
number={8},
pages={8984--8992},
year={2024}
}

Contact

If you have any inquiries regarding our paper or codes, feel free to reach out via email at yehjin.shin@kaist.ac.kr.

Acknowledgement

This repository is based on FMLP-Rec.

About

An Attentive Inductive Bias for Sequential Recommendation beyond the Self-Attention, AAAI-24

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published