Skip to content

yang-zj1026/legged-loco

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Legged Loco

This repo is used to train low-level locomotion policy of Unitree Go2 and H1 in Isaac Lab.

First DemoSecond Demo

Installation

  1. Create a new conda environment with python 3.10.

    conda create -n isaaclab python=3.10
    conda activate isaaclab
  2. Make sure that Isaac Sim is installed on your machine. Otherwise follow this guideline to install it. If installing via the Omniverse Launcher, please ensure that Isaac Sim 4.1.0 is selected and installed. On Ubuntu 22.04 or higher, you could install it via pip:

    pip install isaacsim-rl==4.1.0 isaacsim-replicator==4.1.0 isaacsim-extscache-physics==4.1.0 isaacsim-extscache-kit-sdk==4.1.0 isaacsim-extscache-kit==4.1.0 isaacsim-app==4.1.0 --extra-index-url https://pypi.nvidia.com
  3. Install PyTorch.

    pip install torch==2.2.2 --index-url https://download.pytorch.org/whl/cu121
  4. Clone the Isaac Lab repository, and link extensions.

    Note: This codebase was tested with Isaac Lab 1.1.0 and may not be compatible with newer versions. Please make sure to use the modified version of Isaac Lab provided below, which includes important bug fixes and updates. As Isaac Lab is under active development, we will consider supporting newer versions in the future.

    git clone git@github.com:yang-zj1026/IsaacLab.git
    cd IsaacLab
    cd source/extensions
    ln -s {THIS_REPO_DIR}/isaaclab_exts/omni.isaac.leggedloco .
    cd ../..
  5. Run the Isaac Lab installer script and additionally install rsl rl in this repo.

    ./isaaclab.sh -i none
    ./isaaclab.sh -p -m pip install -e {THIS_REPO_DIR}/rsl_rl
    cd ..

Usage

  • train

    python scripts/train.py --task=go2_base --history_len=9 --run_name=XXX --max_iterations=2000 --save_interval=200 --headless
    
    python scripts/train.py --task=h1_base --run_name=XXX --max_iterations=2000 --save_interval=200 --headless
  • test

    python scripts/play.py --task=go2_base_play --history_len=9 --load_run=RUN_NAME --num_envs=10
    python scripts/play.py --task=h1_base_play --load_run=RUN_NAME --num_envs=10

    Use --headless to enable headless mode. Add --enable_cameras --video for headless rendering and video saving.

Add New Environments

You can add additional environments by placing them under isaaclab_exts/omni.isaac.leggedloco/omni/isaac/leggedloco/config.

About

Low-level locomotion policy training in Isaac Lab

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages