-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
224 lines (181 loc) · 6.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import numpy as np
# ================================================================ #
# Initializing a Tensor #
# ================================================================ #
# Directly from data
data = [[1, 2], [3, 4]]
x_data = torch.tensor(data)
# From a NumPy array
np_array = np.array(data)
x_np = torch.from_numpy(np_array)
# From another tensor
x_ones = torch.ones_like(x_data) # retains the properties of x_data
print(f'Ones Tensor: \n {x_ones}')
x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data
print(f'Random Tensor: \n {x_rand}')
'''Result:
Ones Tensor:
tensor([[1, 1],
[1, 1]])
Random Tensor:
tensor([[0.8154, 0.5755],
[0.3316, 0.8800]])
'''
# With random or constant values
shape = (2, 3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)
print(f'Random Tensor: \n {rand_tensor}')
print(f'Ones Tensor: \n {ones_tensor}')
print(f'Zeros Tensor: \n {zeros_tensor}')
'''Result:
Random Tensor:
tensor([[0.8694, 0.3774, 0.8403],
[0.5461, 0.7127, 0.1988]])
Ones Tensor:
tensor([[1., 1., 1.],
[1., 1., 1.]])
Zeros Tensor:
tensor([[0., 0., 0.],
[0., 0., 0.]])
'''
# ================================================================ #
# Attributes of a Tensor #
# ================================================================ #
''' Tensor attributes describe their shape, datatype, and the device on which they are stored '''
tensor = torch.rand(3, 4)
print(f'Shape of tensor: {tensor.shape}')
print(f'Datatype of tensor: {tensor.dtype}')
print(f'Device tensor is stored on: {tensor.device}')
'''Result:
Shape of tensor: torch.Size([3, 4])
Datatype of tensor: torch.float32
Device tensor is stored on: cpu
'''
# ================================================================ #
# Operations on Tensor #
# ================================================================ #
# Moving a tensor to the GPU if available
if torch.cuda.is_available():
tensor = tensor.to('cuda')
# Standard numpy-like indexing and slicing
tensor = torch.tensor([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16]], dtype=torch.float)
print(f'First row: {tensor[0]}')
print(f'First column: {tensor[:, 0]}')
print(f'Last column: {tensor[..., -1]}')
tensor[:, 1] = 0
print(tensor)
'''Result:
First row: tensor([1., 2., 3., 4.])
First column: tensor([ 1., 5., 9., 13.])
Last column: tensor([ 4., 8., 12., 16.])
tensor([[ 1., 0, 3., 4.],
[ 5., 0, 7., 8.],
[ 9., 0., 11., 12.],
[13., 0., 15., 16.]])
'''
# Joining tensors
t1 = torch.cat([tensor, tensor, tensor, tensor], dim=1)
print(t1)
'''Result:
tensor([[ 1., 0., 3., 4., 1., 0., 3., 4., 1., 0., 3., 4., 1., 0., 3., 4.],
[ 5., 0., 7., 8., 5., 0., 7., 8., 5., 0., 7., 8., 5., 0., 7., 8.],
[ 9., 0., 11., 12., 9., 0., 11., 12., 9., 0., 11., 12., 9., 0., 11., 12.],
[13., 0., 15., 16., 13., 0., 15., 16., 13., 0., 15., 16., 13., 0., 15., 16.]])
'''
# Arithmetic operations
''' This computes the matrix multiplication between two tensors. y1, y2, y3 will have the same value '''
y1 = tensor @ tensor.T
y2 = tensor.matmul(tensor.T)
y3 = torch.rand_like(tensor)
torch.matmul(tensor, tensor.T, out=y3)
print(f'y1: {y1}')
print(f'y2: {y2}')
print(f'y3: {y3}')
'''Result:
tensor([[ 26., 58., 90., 122.],
[ 58., 138., 218., 298.],
[ 90., 218., 346., 474.],
[122., 298., 474., 650.]])
'''
''' This computes the element-wise product. z1, z2, z3 will have the same value '''
z1 = tensor * tensor
z2 = tensor.mul(tensor)
z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)
print(f'z1: {z1}')
print(f'z2: {z2}')
print(f'z3: {z3}')
'''Result:
tensor([[ 1., 0., 9., 16.],
[ 25., 0., 49., 64.],
[ 81., 0., 121., 144.],
[169., 0., 225., 256.]])
'''
# Single-element tensors
agg = tensor.sum()
agg_item = agg.item()
print(agg_item, type(agg_item))
'''Result:
104.0 <class 'float'>
'''
# In-place operations
''' Operations that store the result into the operand
are called in-place. They are denoted by a _ suffix.
For example: x.copy_(y), x.t_(), will change x.
'''
tensor = torch.ones_like(tensor)
print(tensor, '\n')
tensor.add_(5)
print(tensor)
'''Result:
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
tensor([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]])
'''
# ================================================================ #
# Bridge with NumPy #
# ================================================================ #
# Tensor to NumPy
'''Tensors on the CPU and NumPy arrays can
share their underlying memory locations, and
changing one will change the other.
'''
t = torch.ones(5)
print(f't: {t}')
n = t.numpy()
print(f'n: {n}')
'''Result:
t: tensor([1., 1., 1., 1., 1.])
n: [1. 1. 1. 1. 1.]
'''
# A change in the tensor reflects in the NumPy array.
t.add_(1)
print(f't: {t}')
print(f'n: {n}')
'''Result:
t: tensor([2., 2., 2., 2., 2.])
n: [2. 2. 2. 2. 2.]
'''
# ================================================================ #
# NumPy array to Tensor #
# ================================================================ #
n = np.ones(5)
t = torch.from_numpy(n)
np.add(n, 1, out=n)
print(f't: {t}')
print(f'n: {n}')
'''Result:
t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
n: [2. 2. 2. 2. 2.]
'''