forked from liuwei16/CSP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_cache_city.py
executable file
·68 lines (64 loc) · 2.18 KB
/
generate_cache_city.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from __future__ import division
import os
import cv2
import cPickle
import numpy as np
from scipy import io as scio
import time
import matplotlib.pyplot as plt
import re
root_dir = 'data/cityperson'
all_img_path = os.path.join(root_dir, 'images')
all_anno_path = os.path.join(root_dir, 'annotations')
types = ['train']
rows, cols = 1024, 2048
for type in types:
anno_path = os.path.join(all_anno_path, 'anno_'+type+'.mat')
res_path = os.path.join('data/cache/cityperson', type)
image_data = []
annos = scio.loadmat(anno_path)
index = 'anno_'+type+'_aligned'
valid_count = 0
iggt_count = 0
box_count = 0
for l in range(len(annos[index][0])):
anno = annos[index][0][l]
cityname = anno[0][0][0][0].encode()
imgname = anno[0][0][1][0].encode()
gts = anno[0][0][2]
img_path = os.path.join(all_img_path, type + '/'+ cityname+'/'+imgname)
boxes = []
ig_boxes = []
vis_boxes = []
for i in range(len(gts)):
label, x1, y1, w, h = gts[i, :5]
x1, y1 = max(int(x1), 0), max(int(y1), 0)
w, h = min(int(w), cols - x1 -1), min(int(h), rows - y1 -1)
xv1, yv1, wv, hv = gts[i, 6:]
xv1, yv1 = max(int(xv1), 0), max(int(yv1), 0)
wv, hv = min(int(wv), cols - xv1 - 1), min(int(hv), rows - yv1 - 1)
if label == 1 and h>=50:
box = np.array([int(x1), int(y1), int(x1)+int(w), int(y1)+int(h)])
boxes.append(box)
vis_box = np.array([int(xv1), int(yv1), int(xv1)+int(wv), int(yv1)+int(hv)])
vis_boxes.append(vis_box)
else:
ig_box = np.array([int(x1), int(y1), int(x1)+int(w), int(y1)+int(h)])
ig_boxes.append(ig_box)
boxes = np.array(boxes)
vis_boxes = np.array(vis_boxes)
ig_boxes = np.array(ig_boxes)
if len(boxes)>0:
valid_count += 1
annotation = {}
annotation['filepath'] = img_path
box_count += len(boxes)
iggt_count += len(ig_boxes)
annotation['bboxes'] = boxes
annotation['vis_bboxes'] = vis_boxes
annotation['ignoreareas'] = ig_boxes
image_data.append(annotation)
if not os.path.exists(res_path):
with open(res_path, 'wb') as fid:
cPickle.dump(image_data, fid, cPickle.HIGHEST_PROTOCOL)
print '{} has {} images and {} valid images, {} valid gt and {} ignored gt'.format(type, len(annos[index][0]), valid_count, box_count, iggt_count)