-
Notifications
You must be signed in to change notification settings - Fork 7
/
Synthesis1_single.py
295 lines (246 loc) · 7.08 KB
/
Synthesis1_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import numpy as np
import os
import time
import sys
import matplotlib.pyplot as plt
from tqdm import tqdm
import soundfile as sf
from parsevsqx import vsqx2notes
import random
import torch
from stft import TacotronSTFT
dict_size=437
fs = 32000
n=49
wav_path="D:\wav"
tg_path="./data/TextGrid"
dict_path="./pinyin.txt"
mel_ground_truth = "./data/mels"
condition1='./data/con1s'
condition2='./data/con2s'
alignment_path = "./data/alignments"
pinyin={}
def prepare_dict():
fin=open(dict_path,'r')
lines=fin.readlines()
for i in range(len(lines)):
pinyin[lines[i].strip()]=i+1
pinyin_=['']
def prepare_dict4():
fin=open(dict_path,'r')
lines=fin.readlines()
for i in range(len(lines)):
pinyin_.append(lines[i].strip())
prepare_dict4()
def pad_words(words,sentence):
# print(words)
# print(sentence)
if sentence[0]<words[0][0] :
words=[[sentence[0],words[0][0],'',0]]+words
if sentence[1]>words[-1][1]:
words=words+[[words[-1][1],sentence[1],'',0]]
# print(words)
_words=None
for i in range(1,len(words)):
if words[i-1][1]!=words[i][0]:
_words=words[:i]+[[words[i-1][1],words[i][0],'',0]]+words[i:]
if _words is None:
_words=words
print(_words)
return _words
def get_D(words):
D=[]
# print(words)
for i in range(len(words)):
length=words[i][1]-words[i][0]
D.append(int(length))
return np.array(D)
phon_dict={}
def prepare_dict2():
dict_in=open('dict.txt','r')
lines=dict_in.readlines()
for line in lines:
phons=line.strip().split(' ')
phon_dict[phons[0]]=phons[1:]
# print(phon_dict)
prepare_dict2()
dict_v={}
dict_vc={}
dict_uvc={}
def prepare_dict3():
dict_v_in=open('dict_v.txt','r')
dict_vc_in=open('dict_vc.txt','r')
dict_uvc_in=open('dict_uvc.txt','r')
lines_v=dict_v_in.readlines()
lines_vc=dict_vc_in.readlines()
lines_uvc=dict_uvc_in.readlines()
for i in range(len(lines_v)):
dict_v[lines_v[i].strip()]=i+1
for i in range(len(lines_vc)):
dict_vc[lines_vc[i].strip()]=len(lines_v)+i+1
for i in range(len(lines_uvc)):
dict_uvc[lines_uvc[i].strip()]=len(lines_v)+len(lines_vc)+i+1
prepare_dict3()
def get_con1(words):
# print(words)
con1=[]
for i in range(len(words)):
if words[i][2] in pinyin:
con1.append(pinyin[words[i][2]])
else:
con1.append(0)
return np.array(con1)
def get_con2(words):
con2=[]
for i in range(len(words)):
con2.append(words[i][3])
return np.array(con2)
def gen(notes,sentence):
# print(notes)
notes=pad_words(notes,sentence)
D=get_D(notes)
con1=get_con1(notes)
con2=get_con2(notes)
# print(D)
# print(mel.shape,D.sum(),D.shape,con1.shape,con2.shape)
# os.system('pause')
# print(D)
# print(mel.shape,D.sum(),D.shape,con1.shape,con2.shape)
# print(con1)
# print(con2)
# os.system('pause')
assert D.shape[0]==con1.shape[0]==con2.shape[0]
# assert mel.shape[0]==D.sum()
return [con1,con2,D]
def process_D(D):
for i in range(len(D)):
D[i]=int(D[i]+6*random.random()-3)
return D
stft = TacotronSTFT()
def get_mel(audio):
audio_norm = torch.FloatTensor(audio.astype(np.float64))
audio_norm = audio_norm.unsqueeze(0)
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
melspec = stft.mel_spectrogram(audio_norm)
melspec = torch.squeeze(melspec, 0).transpose(0,1)
return melspec.numpy()
def find_phon(phon):
if phon=='sil' or phon=='':
return 0
elif phon in dict_v:
return dict_v[phon]
elif phon in dict_vc:
return dict_vc[phon]
elif phon in dict_uvc:
return dict_uvc[phon]
def convert(src):
# print(src.shape)
length=src.shape[1]
words=[]
for i in range(length):
if src[0][i]!=1:
words.append([[src[x][i]for x in range(3)]])
else:
words[-1].append([src[x][i]for x in range(3)])
intervals=[]
# print(pinyin_)
for word in words:
# length_word=word[0][2]
# for j in range(1,len(word)):
# length_word+=word[j][2]
# print(word)
if word[0][0]==0:
intervals.append([0,0,word[0][2]])
continue
_pinyin=pinyin_[word[0][0]]
phons=phon_dict[_pinyin]
phon_n=[find_phon(phon)for phon in phons]
intervals.append([phon_n[0],word[0][1],word[0][2]])
if len(phon_n)==2:
intervals.append([phon_n[1],word[0][1],word[0][2]])
for j in range(1,len(word)):
if len(phon_n)==2:
intervals.append([phon_n[1],word[j][1],word[j][2]])
else:
intervals.append([phon_n[0],word[j][1],word[j][2]])
return np.array(intervals)
prepare_dict()
# main()
words,begin,end = vsqx2notes(sys.argv[1])
# x, _fs = sf.read(sys.argv[2])
# refer_mel=get_mel(x)
wav=np.zeros(1)
length1=20
last=begin
last_n=0
cot=1
i=0
con1s=[]
con2s=[]
Ds=[]
part=[]
while i <len(words)-1:
if words[i][1]!=words[i+1][0]:
length2=words[i+1][0]-words[i][1]-10
begin=last-10
end=words[i][1]+length2
length1=length2
# print(begin,end)
print('Part %d: from %d to %d len:%d n_note: %d'%(cot,begin,end,end-begin,i+1-last_n))
# con1,con2,D=gen(words[last_n:i+1],(begin,end,'-'))
part.append([last_n,i+1,begin,end])
# print(con1)
# print(con2)
# print(D)
# D=process_D(D)
# print(D)
# con1s.append(con1)
# con2s.append(con2)
# Ds.append(D)
last=words[i+1][0]
last_n=i+1
cot+=1
i+=1
length2=40
begin=last-10
end=words[i][1]+length2
length1=length2
print('Part %d: from %d to %d len:%d n_note: %d'%(cot,begin,end,end-begin,i+1-last_n))
# con1,con2,D=gen(words[last_n:i+1],(begin,end,'-'))
part.append([last_n,i+1,begin,end])
# print(part)
# print(words)
i=0
while(i<len(part)):
if i+1<len(part) and part[i+1][0]-part[i][1]<300:
con1,con2,D=gen(words[part[i][0]:part[i+1][1]],(part[i][2],part[i+1][3],'-'))
con1s.append(con1)
con2s.append(con2)
Ds.append(D)
i+=2
else:
con1,con2,D=gen(words[part[i][0]:part[i][1]],(part[i][2],part[i][3],'-'))
con1s.append(con1)
con2s.append(con2)
Ds.append(D)
i+=1
# D=process_D(D)
# print(D)
# con1s.append(con1)
# con2s.append(con2)
# Ds.append(D)
os.system('rm ./tmp/cons/*')
# os.system('rm ./tmp/con2s/*')
# os.system('rm ./tmp/Ds/*')
# print(con1s[0].shape,con2s[0].shape,Ds[0].shape)
for i in range(len(con1s)):
con=np.stack([con1s[i],con2s[i],Ds[i]])
# print(con)
_con=np.swapaxes(convert(con),0,1)
print(_con)
np.save('./tmp/cons/%03d.npy'%i,_con)
# np.save('./tmp/con2s/%03d.npy'%i,con2s[i])
# np.save('./tmp/Ds/%03d.npy'%i,Ds[i])
# np.save('./tmp/refer_mels/%03d.npy'%i,refer_mel)
os.environ['MKL_SERVICE_FORCE_INTEL']='true'
os.system('CUDA_VISIBLE_DEVICES=0 python synthesize.py')