Skip to content
/ xo Public

Command line tool to generate idiomatic Go code for SQL databases supporting PostgreSQL, MySQL, SQLite, Oracle, and Microsoft SQL Server

License

Notifications You must be signed in to change notification settings

xo/xo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

xo

xo is a command-line tool to generate idiomatic code for different languages code based on a database schema or a custom query.

Supported languages

At the moment, xo only supports Go. Support for other languages will come soon.

How it works

In schema mode, xo connects to your database and generates code using Go templates. xo works by using database metadata and SQL introspection queries to discover the types and relationships contained within a schema, and applying a standard set of base (or customized) Go templates against the discovered relationships.

Currently, xo can generate types for tables, enums, stored procedures, and custom SQL queries for PostgreSQL, MySQL, Oracle, Microsoft SQL Server, and SQLite3 databases.

Note: While the code generated by xo is production quality, it is not the goal, nor the intention for xo to be a "silver bullet," nor to completely eliminate the manual authoring of SQL / Go code.

In query mode, xo parses your query to generate code from Go templates. It finds related tables in your database to ensure type safety.

Database Feature Support

The following is a matrix of the feature support for each database:

PostgreSQL MySQL Oracle Microsoft SQL Server SQLite
Models âś… âś… âś… âś… âś…
Primary Keys âś… âś… âś… âś… âś…
Foreign Keys âś… âś… âś… âś… âś…
Indexes âś… âś… âś… âś… âś…
Stored Procs âś… âś…
ENUM types âś… âś…
Custom types âś…

Installation

For Go code generation, install the goimports dependency (if not already installed):

$ go get -u golang.org/x/tools/cmd/goimports

Then, install xo in the usual Go way:

$ go get -u github.com/xo/xo

# Install with oracle support (see notes below)
$ go get -tags oracle -u github.com/xo/xo

Note: Go 1.16+ is needed for installing xo from source, as it makes use of go embed to embed Go templates into the binaries, which is not compatible with previous versions of Go. When compiling to Go, generated code can compile with Go 1.3+ code, disabling context mode if necessary.

Quickstart

The following is a quick overview of using xo on the command-line:

# Make an output directory for generated code.
$ mkdir -p models

# Generate code from your Postgres schema. (Default output folder is models)
$ xo schema pgsql://user:pass@host/dbname

# Generate code from a Microsoft SQL schema using a custom template directory (see notes below)
$ mkdir -p mssqlmodels
$ xo schema mssql://user:pass@host/dbname -o mssqlmodels --src custom/templates

# Generate code from a custom SQL query for Postgres
$ xo query pg://user:pass@host/dbname -M -B -T -2 AuthorResulto << ENDSQL
SELECT
  a.name::varchar AS name,
  b.type::integer AS my_type
FROM authors a
  INNER JOIN authortypes b ON a.id = b.author_id
WHERE
  a.id = %%authorID int%%
LIMIT %%limit int%%
ENDSQL

# Build generated code - verify it compiles
$ go build ./models/
$ go build ./mssqlmodels/

Command Line Options

The following are xo's command-line arguments and options:

$ xo --help-long
usage: xo [<flags>] <command> [<args> ...]

Flags:
      --help                   Show context-sensitive help (also try --help-long
                               and --help-man).
  -v, --verbose                enable verbose output
      --version                display version and exit
  -s, --schema=<name>          database schema name
  -t, --template=go            template type (go, graphviz; default: go)
  -f, --suffix=<ext>           file extension suffix for generated files
                               (otherwise set by template type)
  -o, --out=models             out path (default: models)
  -a, --append                 enable append mode
  -S, --single=<file>          enable single file output
  -D, --debug                  debug generated code (writes generated code to
                               disk without post processing)
  -k, --fk-mode=smart          foreign key resolution mode (smart, parent,
                               field, key; default: smart)
  -I, --ignore=<field> ...     fields to exclude from generated code
  -j, --use-index-names        use index names as defined in schema for
                               generated code
  -d, --src=<path>             template source directory
  -2, --go-not-first           disable package comment (ie, not first generated
                               file)
      --go-int32=int           int32 type (default: int)
      --go-uint32=uint         uint32 type (default: uint)
      --go-pkg=<name>          package name
      --go-tag="" ...          build tags
      --go-import="" ...       package imports
      --go-uuid=<pkg>          uuid type package
      --go-custom=<name>       package name for custom types
      --go-conflict=Val        name conflict suffix (default: Val)
      --go-esc=none ...        escape fields (none, schema, table, column, all;
                               default: none)
  -g, --go-field-tag=<tag>     field tag
      --go-context=only        context mode (disable, both, only; default: only)
      --go-inject=""           insert code into generated file headers
      --go-inject-file=<file>  insert code into generated file headers from a
                               file
      --postgres-oids          enable postgres OIDs

Args:
  <DSN>  data source name

Commands:
  help [<command>...]
    Show help.


  query [<flags>] <DSN>
    Generate code for a database custom query from a template.

    -s, --schema=<name>          database schema name
    -t, --template=go            template type (go, graphviz; default: go)
    -f, --suffix=<ext>           file extension suffix for generated files
                                 (otherwise set by template type)
    -o, --out=models             out path (default: models)
    -a, --append                 enable append mode
    -S, --single=<file>          enable single file output
    -D, --debug                  debug generated code (writes generated code to
                                 disk without post processing)
    -Q, --query=""               custom database query (uses stdin if not
                                 provided)
    -T, --type=<name>            type name
        --type-comment=""        type comment
    -F, --func=<name>            func name
        --func-comment=""        func comment
    -M, --trim                   enable trimming whitespace
    -B, --strip                  enable stripping type casts
    -1, --one                    enable returning single (only one) result
    -l, --flat                   enable returning unstructured values
    -I, --interpolate            enable interpolation of embedded params
    -L, --delimiter=%%           delimiter used for embedded params (default:
                                 %%)
    -Z, --fields=<field>         override field names for results
    -U, --allow-nulls            allow result fields with NULL values
    -d, --src=<path>             template source directory
    -2, --go-not-first           disable package comment (ie, not first
                                 generated file)
        --go-int32=int           int32 type (default: int)
        --go-uint32=uint         uint32 type (default: uint)
        --go-pkg=<name>          package name
        --go-tag="" ...          build tags
        --go-import="" ...       package imports
        --go-uuid=<pkg>          uuid type package
        --go-custom=<name>       package name for custom types
        --go-conflict=Val        name conflict suffix (default: Val)
        --go-esc=none ...        escape fields (none, schema, table, column,
                                 all; default: none)
    -g, --go-field-tag=<tag>     field tag
        --go-context=only        context mode (disable, both, only; default:
                                 only)
        --go-inject=""           insert code into generated file headers
        --go-inject-file=<file>  insert code into generated file headers from a
                                 file

  schema [<flags>] <DSN>
    Generate code for a database schema from a template.

    -s, --schema=<name>          database schema name
    -t, --template=go            template type (go, graphviz; default: go)
    -f, --suffix=<ext>           file extension suffix for generated files
                                 (otherwise set by template type)
    -o, --out=models             out path (default: models)
    -a, --append                 enable append mode
    -S, --single=<file>          enable single file output
    -D, --debug                  debug generated code (writes generated code to
                                 disk without post processing)
    -k, --fk-mode=smart          foreign key resolution mode (smart, parent,
                                 field, key; default: smart)
    -I, --ignore=<field> ...     fields to exclude from generated code
    -j, --use-index-names        use index names as defined in schema for
                                 generated code
    -d, --src=<path>             template source directory
    -2, --go-not-first           disable package comment (ie, not first
                                 generated file)
        --go-int32=int           int32 type (default: int)
        --go-uint32=uint         uint32 type (default: uint)
        --go-pkg=<name>          package name
        --go-tag="" ...          build tags
        --go-import="" ...       package imports
        --go-uuid=<pkg>          uuid type package
        --go-custom=<name>       package name for custom types
        --go-conflict=Val        name conflict suffix (default: Val)
        --go-esc=none ...        escape fields (none, schema, table, column,
                                 all; default: none)
    -g, --go-field-tag=<tag>     field tag
        --go-context=only        context mode (disable, both, only; default:
                                 only)
        --go-inject=""           insert code into generated file headers
        --go-inject-file=<file>  insert code into generated file headers from a
                                 file
        --postgres-oids          enable postgres OIDs

  dump [<flags>] <out>
    Dump internal templates to path.

    -t, --template=go   template type (go, graphviz; default: go)
    -f, --suffix=<ext>  file extension suffix for generated files (otherwise set
                        by template type)

About Base Templates

xo provides a set of generic "base" templates for each of the supported databases, but it is understood these templates are not suitable for every organization or every schema out there. As such, you can author your own custom templates, or modify the base templates available in the xo source tree, and use those with xo by a passing a directory path via the --src flag.

For non-trivial schemas, custom templates are the most practical, common, and best way to use xo (see below quickstart and related example).

Custom Template Quickstart

The following is a quick overview of copying the base templates contained in the xo project's templates/ directory, editing to suit, and using with xo:

# Create a template directory
$ mkdir -p templates

# Copy xo templates
$ xo dump templates

# edit base postgres templates
$ vi templates/*.go.tpl

# use with xo
$ xo pgsql://user:pass@host/db -o models --src templates

See the Custom Template example below for more information on adapting the base templates in the xo source tree for use within your own project.

Storing Project Templates

Ideally, the custom templates for your project/schema should be stored within your project, and used in conjunction with a build pipeline such as go generate:

# Add to custom xo command to go generate:
$ tee -a gen.go << ENDGO
package mypackage

//go:generate xo pgsql://user:pass@host/db -o models --src templates
ENDGO

# Run go generate
$ go generate

# Add custom templates and gen.go to project
$ git add templates gen.go && git commit -m 'Adding custom xo templates for models'

Note: using xo dump will create templates for all languages. You can safely delete templates used for code generation for the other languages.

Template Language/Syntax

xo templates are standard Go text templates. Please see the documentation for Go's standard text/template package for information concerning the syntax, logic, and variable use within Go templates.

Template Context and File Layout

The contexts (ie, the . identifier in templates) made available to custom templates can be found in templates/types.go (see below table for more information on which file uses which type).

Each language, has its own set of templates for $TYPE and are available in the templates/.

Template File Type Description
hdr.xo.*.tpl Base template. Executed with content for a template.
db.xo.*.tpl Package level template with base types and interface data. Generated once per package.
schema/enum.xo.*.tpl Enum Template for schema enum type definitions. Generates types and related methods.
schema/foreignkey.xo.*.tpl ForeignKey Template for foreign key relationships. Generates related method.
schema/index.xo.*.tpl Index Template for schema indexes. Generates related method.
schema/proc.xo.*.tpl Proc Template to generate functions to call defined stored procedures in the db.
schema/typedef.xo.*.tpl Type Template for schema table/views.
query/custom.xo.*.tpl Query Template for custom query execution.
query/typedef.xo.*.tpl Type Template for custom query's generated type.

For example, Go has templates/gotpl/schema/foreignkey.xo.go.tpl which defines the template used by xo for generating a function to get the foreign key type in Go. The templates are designed to be Database agnostic, so they are used for both PostgreSQL and Microsoft SQL the same, and all other supported database types. The template is passed a different instance of templates.ForeignKey instance (for each foreign key in a table). To get the Name field in from ForeignKey, the template can use {{ .Data.Name }}, or any other field similarly.

Template Helpers

There is a set of well-defined template helpers in funcs.go for each supported language that assist with writing templated Go code / SQL. Please review how the base templates make use of helpers, and the inline Go documentation for the respective helper func definitions.

Examples

Example: End-to-End

Please see the booktest example for a full end-to-end example for each supported database, showcasing how to use a database schema with xo, and the resulting code generated by xo.

Additionally, please see the northwind example for a demonstration of running xo against a large schema. Please note that this example is a work in progress, and does not yet work properly with Microsoft SQL Server and Oracle databases, and has no documentation (for now) -- however it works very similarly to the booktest end-to-end example.

Example: Ignoring Fields

Sometimes you may wish to have the database manage the values of columns instead of having them managed by code generated by xo. As such, when you need xo to ignore fields for a database schema, you can use the --ignore flag. For example, a common use case is to define a table with created_at and/or modified_at timestamps, where the database is responsible for setting column values on INSERT and UPDATE, respectively.

Consider the following PostgreSQL schema where a users table has a created_at and modified_at field, where created_at has a default value of now() and where modified_at is updated by a trigger on UPDATE:

CREATE TABLE users (
  id          SERIAL PRIMARY KEY,
  name        text NOT NULL DEFAULT '' UNIQUE,
  created_at  timestamptz   default now(),
  modified_at timestamptz   default now()
);

CREATEOR REPLACE FUNCTION update_modified_column() RETURNS TRIGGER AS $$
BEGIN
    NEW.modified_at= now();
RETURN NEW;
END;
$$language 'plpgsql';

CREATE TRIGGER update_users_modtime BEFORE UPDATE ON users
  FOR EACH ROW EXECUTE PROCEDURE update_modified_column();

We can ensure that these columns are managed by PostgreSQL and not by the application logic but by xo by passing the --ignore flag:

# Ignore special fields
$ xo schema pgsql://user:pass@host/db --ignore created_at modified_at

Example: Custom Template -- adding a GetMostRecent lookup for all tables (Go)

Often, a schema has a common layout/pattern, such as every table having a created_at and modified_at field (as in the PostgreSQL schema in the previous example). It is then a common use-case to have a GetMostRecent lookup for each table type, retrieving the most recently modified rows for each table (up to some limit, N).

To accomplish this with xo, we will need to create our own set of custom templates, and then add a GetMostRecent lookup to the .type.go.tpl template.

First, we create dump the base xo templates:

$ mkdir -p templates

$ xo dump templates

We can now modify the templates to suit our specific schema, adding lookups, helpers, or anything else necessary for our schema.

To add a GetMostRecent lookup, we edit our copy of the typedef.xo.go.tpl template:

$ vi templates/gotpl/schema/typedef.xo.go.tpl

And add the following templated GetMostRecent func at the end of the file:

// GetMostRecent{{ $type.Name }} returns n most recent rows from '{{ $table }}',
// ordered by "created_at" in descending order.
func GetMostRecent{{ $type.Name }}(ctx context.Context, db DB, n int) ([]*{{ $type.Name }}, error) {
    const sqlstr = `SELECT ` +
        `{{ $type.Fields "created_at" "modified_at" }}` +
        `FROM {{ $table }} ` +
        `ORDER BY created_at DESC LIMIT $1`

    rows, err := db.QueryContext(ctx, sqlstr, n)
    if err != nil {
        return nil, logerror(err)
    }
    defer rows.Close()

    // load results
    var res []*{{ $type.Name }}
    for rows.Next() {
        {{ $short }} := {{ $type.Name }}{
        {{- if $type.PrimaryKey }}
            _exists: true,
        {{ end -}}
        }
        // scan
        if err := rows.Scan({{ fieldnames $type.Fields (print "&" $short) }}); err != nil {
            return nil, logerror(err)
        }
        res = append(res, &{{ $short }})
    }
    return res, nil
}

We can then use the templates in conjunction with xo to generate our "model" code:

$ xo schema pgsql://user:pass@localhost/dbname --src templates/

There will now be a GetMostRecentUsers func defined in models/user.xo.go, which can be used as follows:

db, err := dburl.Open("pgsql://user:pass@localhost/dbname")
if err != nil { /* ... */ }

// retrieve 15 most recent items
mostRecentUsers, err := models.GetMostRecentUsers(context.Background(), db, 15)
if err != nil { /* ... */ }
for _, user := range users {
    log.Printf("got user: %+v", user)
}

Using SQL Drivers

Please note that the base xo templates do not import any SQL drivers. It is left for the user of xo's generated code to import the actual drivers. For reference, these are the expected drivers to use with the code generated by xo:

Database (driver) Package
Microsoft SQL Server (mssql) github.com/denisenkom/go-mssqldb
MySQL (mysql) github.com/go-sql-driver/mysql
Oracle (ora) gopkg.in/rana/ora.v4
PostgreSQL (postgres) github.com/lib/pq
SQLite3 (sqlite3) github.com/mattn/go-sqlite3

Additionally, please see below for usage notes on specific SQL database drivers.

MySQL (mysql)

If your schema or custom query contains table or column names that need to be escaped using any of the --escape-* options, you must pass the sql_mode=ansi option to the MySQL driver:

$ xo --escape-all 'mysql://user:pass@host/?parseTime=true&sql_mode=ansi' -o models

And when opening a database connection:

db, err := dburl.Open("mysql://user:pass@host/?parseTime=true&sql_mode=ansi")

Additionally, when working with date/time column types in MySQL, one should pass the parseTime=true option to the MySQL driver:

$ xo 'mysql://user:pass@host/dbname?parseTime=true' -o models

And when opening a database connection:

db, err := dburl.Open("mysql://user:pass@host/dbname?parseTime=true")

Oracle (ora)

Oracle support is disabled by default as the Go Oracle driver used by xo needs the Oracle instantclient libs to be installed/known by pkg-config. If you have already installed rana's Oracle driver according to the installation instructions, you can simply pass -tags oracle to go get, go install or go build to enable Oracle support:

$ go get -tags oracle -u github.com/xo/xo

Installing Oracle instantclient on Debian/Ubuntu

On Ubuntu/Debian, you may download the instantclient RPMs here.

You should then be able to do the following:

# install alien, if not already installed
$ sudo aptitude install alien

# install the instantclient RPMs
$ sudo alien -i oracle-instantclient-12.1-basic-*.rpm
$ sudo alien -i oracle-instantclient-12.1-devel-*.rpm
$ sudo alien -i oracle-instantclient-12.1-sqlplus-*.rpm

# get xo
$ go get -u github.com/xo/xo

# copy oci8.pc from xo/contrib to system pkg-config directory
$ sudo cp $GOPATH/src/github.com/xo/xo/contrib/oci8.pc /usr/lib/pkgconfig/

# install rana's ora driver
$ go get -u gopkg.in/rana/ora.v4

# assuming the above succeeded, install xo with oracle support enabled
$ go install -tags oracle github.com/xo/xo

Contrib Scripts and Oracle Docker Image

It's of note that there are additional scripts available in the usql contrib directory that can help when working with Oracle databases and xo.

For reference, the xo developers use the sath89/oracle-12c Docker image for testing xo's Oracle database support.

SQLite3 (sqlite3)

While not required, one should specify the loc=auto option when using xo with a SQLite3 database:

$ xo 'file:mydatabase.sqlite3?loc=auto' -o models

And when opening a database connection:

db, err := dburl.Open("file:mydatabase.sqlite3?loc=auto")

About Primary Keys

For row inserts xo determines whether the primary key is automatically generated by the DB or must be provided by the application for the table row being inserted. For example a table that has a primary key that is also a foreign key to another table, or a table that has multiple primary keys in a many-to-many link table, it is desired that the application provide the primary key(s) for the insert rather than the DB.

xo will query the schema to determine if the database provides an automatic primary key and if the table does not provide one then it will require that the application provide the primary key for the object passed to the Insert method. Below is information on how the logic works for each database type to determine if the DB automatically provides the PK.

MySQL Auto PK Logic

  • Checks for an autoincrement row in the information_schema for the table in question.

PostgreSQL Auto PK Logic

  • Checks for a sequence that is owned by the table in question.

SQLite Auto PK Logic

  • Checks the SQL that is used to generate the table contains the AUTOINCREMENT keyword.
  • Checks that the table was created with the primary key type of INTEGER.

If either of the above conditions are satisfied then the PK is determined to be automatically provided by the DB. For the case of integer PK's when you want to override that the PK be manually provided then you can define the key type as INT instead of INTEGER, for example as in the following many-to-many link table:

  CREATE TABLE site_contacts (
  contact_id	INT NOT NULL,
  site_id	INT NOT NULL,
  PRIMARY KEY(contact_id,siteid),
  FOREIGN KEY(contact_id) REFERENCES contacts (contact_id),
  FOREIGN KEY(site_id) REFERENCES sites (site_id)
)

SQL Server Auto PK Logic

  • Checks for an identity associated with one of the columns for the table in question.

Oracle Auto PK Logic

There is currently no method provided for Oracle as there is no programmatic way to query for which sequences are associated with tables. All Primary Keys will be assumed to be provided by the database.

About xo: Design, Origin, Philosophy, and History

xo can likely get you 99% "of the way there" on medium or large database schemas and 100% of the way there for small or trivial database schemas. In short, xo is a great launching point for developing standardized packages for standard database abstractions/relationships, and xo's most common use-case is indeed in a code generation pipeline, ala stringer.

Design

xo is NOT designed to be an ORM or to generate an ORM. Instead, xo is designed to vastly reduce the overhead/redundancy of (re-)writing types and funcs for common database queries/relationships -- it is not meant to be a "silver bullet".

History

xo was originally developed while migrating a large application written in PHP to Go. The schema in use in the original app, while well-designed, had become inconsistent over multiple iterations/generations, mainly due to different naming styles adopted by various developers/database admins over the preceding years. Additionally, some components had been written in different languages (Ruby, Java) and had also accumulated significant drift from the original application and accompanying schema. Simultaneously, a large amount of growth meant that the PHP/Ruby code could no longer efficiently serve the traffic volumes.

In late 2014/early 2015, a decision was made to unify and strip out certain backend services and to fully isolate the API from the original application, allowing the various components to instead speak to a common API layer instead of directly to the database, and to build that service layer in Go.

However, unraveling the old PHP/Ruby/Java code became a large headache, as the code, the database, and the API, all had significant drift -- thus, underlying function names, fields, and API methods no longer coincided with the actual database schema, and were named differently in each language. As such, after a round of standardizing names, dropping cruft, and adding a few relationship changes to the schema, the various codebases were fixed to match the schema changes. After that was determined to be a success, the next target was to rewrite the backend services in Go.

In order to keep a similar and consistent workflow for the developers, the previous code generator (written in PHP and Twig templates) was modified to generate Go code. Additionally, at this time, but tangential to the story, the API definitions were ported from JSON to Protobuf to make use of its code generation abilities as well.

xo is the open source version of that code generation tool, and is the fruits of those development efforts. It is hoped that others will be able to use and expand xo to support other databases -- SQL or otherwise -- and that xo can become a common tool in any Go developer's toolbox.

Goals

Part of xo's goals is to avoid writing an ORM, or an ORM-like in Go, and to instead generate static, type-safe, fast, and idiomatic Go code across languages and databases. Additionally, the xo developers are of the opinion that relational databases should have proper, well-designed relationships and all the related definitions should reside within the database schema itself: ie, a "self-documenting" schema. xo is an end to that pursuit.

Related Projects

  • dburl - a Go package providing a standard, URL style mechanism for parsing and opening database connection URLs
  • usql - a universal command-line interface for SQL databases

Other Projects

The following projects work with similar concepts as xo:

Go Generators

Go ORM-likes

TODO

  • Add (finish) stored proc support for Oracle + Microsoft SQL Server
  • Unit tests / code coverage / continuous builds for binary package releases
  • Move database introspection to separate package for reuse by other Go packages
  • Overhaul/standardize type parsing
  • Finish support for --{incl, excl}[ude] types
  • Write/publish template set for protobuf
  • Add support for generating models for other languages
  • Finish many-to-many and link table support
  • Finish example and code for generated *Slice types (also, only generate for the databases its needed for)
  • Add example for many-to-many relationships and link tables
  • Add support for supplying a file (ie, *.sql) for query generation
  • Add support for full text types (tsvector, tsquery on PostgreSQL)
  • Finish COMMENT support for PostgreSQL/MySQL and update templates accordingly.
  • Add support for JSON types (json, jsonb on PostgreSQL, json on MySQL)
  • Add support for GIN index queries (PostgreSQL)