- 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远
- Machine Learning in Action (机器学习实战) | ApacheCN(apache中文网)
- 1.) 机器学习基础
- 2.) k-近邻算法
- 3.) 决策树
- 4.) 基于概率论的分类方法:朴素贝叶斯
- 5.) Logistic回归
- 6.) 支持向量机
- 7.1) 利用AdaBoost元算法提高分类
- 7.2) 随机森林的使用(非课本内容)
- 8.) 预测数值型数据:回归
- 9.) 树回归
- 10.) 使用K-均值聚类算法对未标注数据分组:k-means聚类
- 11.) 使用Apriori算法进行关联分析
- 12.) 使用FP-growth算法来高效发现频繁项集
- 13.) 利用PCA来简化数据
- 14.) 利用SVD简化数据
- 15.) 大数据与MapReduce
- 16.) 推荐系统【后续组织学习:机器学习框架sklearn、深度学习框架TensorFlow】
- 附录A Python入门
- 附录B 线性代数
- 附录C 概率论复习
- 附录D 资源
- 索引
- 版权声明
- ApacheCN(apache中文网) 维护更新