-
Notifications
You must be signed in to change notification settings - Fork 19
/
main.py
524 lines (466 loc) · 21.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
from __future__ import print_function
import argparse
import os
import time, platform
import cv2
import numpy as np
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from thop import profile
from dataset import DATASET_NAMES, BipedDataset, TestDataset, dataset_info
# from loss import *
from loss2 import *
# from modelB6 import LDC
# from modelB5 import LDC
from modelB4 import LDC
# from modelB3 import LDC
# from modelB2 import LDC
# from model6 import LDC
from utils.img_processing import (image_normalization, save_image_batch_to_disk,
visualize_result, count_parameters)
IS_LINUX = True if platform.system()=="Linux" else False
def train_one_epoch(epoch, dataloader, model, criterions, optimizer, device,
log_interval_vis, tb_writer, args=None):
imgs_res_folder = os.path.join(args.output_dir, 'current_res')
os.makedirs(imgs_res_folder,exist_ok=True)
if isinstance(criterions, list):
criterion1, criterion2 = criterions
else:
criterion1 = criterions
# Put model in training mode
model.train()
l_weight0 = [0.7,0.7,1.1,0.7,1.3] # for bdcn loss2-B4
# l_weight0 = [0.7, 0.7, 1.1, 1.1, 0.3, 0.3, 1.3] # for bdcn loss2-B6
l_weight = [[0.05, 2.], [0.05, 2.], [0.05, 2.],
[0.1, 1.], [0.1, 1.], [0.1, 1.],
[0.01, 4.]] # for cats loss
loss_avg =[]
for batch_id, sample_batched in enumerate(dataloader):
images = sample_batched['images'].to(device) # BxCxHxW
labels = sample_batched['labels'].to(device) # BxHxW
preds_list = model(images)
# loss = sum([criterion2(preds, labels,l_w) for preds, l_w in zip(preds_list[:-1],l_weight0)]) # bdcn_loss2
loss = sum([criterion1(preds, labels, l_w, device) for preds, l_w in zip(preds_list, l_weight)]) # cats_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_avg.append(loss.item())
if epoch==0 and (batch_id==100 and tb_writer is not None):
tmp_loss = np.array(loss_avg).mean()
tb_writer.add_scalar('loss', tmp_loss,epoch)
if batch_id % 10 == 0:
print(time.ctime(), 'Epoch: {0} Sample {1}/{2} Loss: {3}'
.format(epoch, batch_id, len(dataloader), format(loss.item(),'.4f')))
if batch_id % log_interval_vis == 0:
res_data = []
img = images.cpu().numpy()
res_data.append(img[2])
ed_gt = labels.cpu().numpy()
res_data.append(ed_gt[2])
# tmp_pred = tmp_preds[2,...]
for i in range(len(preds_list)):
tmp = preds_list[i]
tmp = tmp[2]
# print(tmp.shape)
tmp = torch.sigmoid(tmp).unsqueeze(dim=0)
tmp = tmp.cpu().detach().numpy()
res_data.append(tmp)
vis_imgs = visualize_result(res_data, arg=args)
del tmp, res_data
vis_imgs = cv2.resize(vis_imgs,
(int(vis_imgs.shape[1]*0.8), int(vis_imgs.shape[0]*0.8)))
img_test = 'Epoch: {0} Sample {1}/{2} Loss: {3}' \
.format(epoch, batch_id, len(dataloader), loss.item())
BLACK = (0, 0, 255)
font = cv2.FONT_HERSHEY_SIMPLEX
font_size = 1.1
font_color = BLACK
font_thickness = 2
x, y = 30, 30
vis_imgs = cv2.putText(vis_imgs,
img_test,
(x, y),
font, font_size, font_color, font_thickness, cv2.LINE_AA)
cv2.imwrite(os.path.join(imgs_res_folder, 'results.png'), vis_imgs)
loss_avg = np.array(loss_avg).mean()
return loss_avg
def validate_one_epoch(epoch, dataloader, model, device, output_dir, arg=None):
# XXX This is not really validation, but testing
# Put model in eval mode
model.eval()
with torch.no_grad():
for _, sample_batched in enumerate(dataloader):
images = sample_batched['images'].to(device)
# labels = sample_batched['labels'].to(device)
file_names = sample_batched['file_names']
image_shape = sample_batched['image_shape']
preds = model(images)
# print('pred shape', preds[0].shape)
save_image_batch_to_disk(preds[-1],
output_dir,
file_names,img_shape=image_shape,
arg=arg)
def test(checkpoint_path, dataloader, model, device, output_dir, args):
if not os.path.isfile(checkpoint_path):
raise FileNotFoundError(
f"Checkpoint filte note found: {checkpoint_path}")
print(f"Restoring weights from: {checkpoint_path}")
model.load_state_dict(torch.load(checkpoint_path,
map_location=device))
model.eval()
with torch.no_grad():
total_duration = []
for batch_id, sample_batched in enumerate(dataloader):
images = sample_batched['images'].to(device)
if not args.test_data == "CLASSIC":
labels = sample_batched['labels'].to(device)
file_names = sample_batched['file_names']
image_shape = sample_batched['image_shape']
print(f"{file_names}: {images.shape}")
# if batch_id==0:
# mac,param = profile(model,inputs=(images,))
# end = time.perf_counter()
# if device.type == 'cuda':
# torch.cuda.synchronize()
# preds = model(images)
# if device.type == 'cuda':
# torch.cuda.synchronize()
# else:
end = time.perf_counter()
if device.type == 'cuda':
torch.cuda.synchronize()
preds = model(images)
if device.type == 'cuda':
torch.cuda.synchronize()
tmp_duration = time.perf_counter() - end
total_duration.append(tmp_duration)
save_image_batch_to_disk(preds,
output_dir,
file_names,
image_shape,
arg=args)
torch.cuda.empty_cache()
total_duration = np.sum(np.array(total_duration))
print("******** Testing finished in", args.test_data, "dataset. *****")
print("FPS: %f.4" % (len(dataloader)/total_duration))
# print("Time spend in the Dataset: %f.4" % total_duration.sum(), "seconds")
def testPich(checkpoint_path, dataloader, model, device, output_dir, args):
# a test model plus the interganged channels
if not os.path.isfile(checkpoint_path):
raise FileNotFoundError(
f"Checkpoint filte note found: {checkpoint_path}")
print(f"Restoring weights from: {checkpoint_path}")
model.load_state_dict(torch.load(checkpoint_path,
map_location=device))
model.eval()
with torch.no_grad():
total_duration = []
for batch_id, sample_batched in enumerate(dataloader):
images = sample_batched['images'].to(device)
if not args.test_data == "CLASSIC":
labels = sample_batched['labels'].to(device)
file_names = sample_batched['file_names']
image_shape = sample_batched['image_shape']
print(f"input tensor shape: {images.shape}")
start_time = time.time()
images2 = images[:, [1, 0, 2], :, :] #GBR
# images2 = images[:, [2, 1, 0], :, :] # RGB
preds = model(images)
preds2 = model(images2)
tmp_duration = time.time() - start_time
total_duration.append(tmp_duration)
save_image_batch_to_disk([preds,preds2],
output_dir,
file_names,
image_shape,
arg=args, is_inchannel=True)
torch.cuda.empty_cache()
total_duration = np.array(total_duration)
print("******** Testing finished in", args.test_data, "dataset. *****")
print("Average time per image: %f.4" % total_duration.mean(), "seconds")
print("Time spend in the Dataset: %f.4" % total_duration.sum(), "seconds")
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(description='LDC trainer.')
parser.add_argument('--choose_test_data',
type=int,
default=-1, # uded 14
help='Choose a dataset for testing: 0 - 8')
# ----------- test -------0--
TEST_DATA = DATASET_NAMES[parser.parse_args().choose_test_data] # max 8
test_inf = dataset_info(TEST_DATA, is_linux=IS_LINUX)
test_dir = test_inf['data_dir']
is_testing =False
# Training settings
# BIPED-B2=1, BIPDE-B3=2, just for evaluation, using LDC trained with 2 or 3 bloacks
TRAIN_DATA = DATASET_NAMES[0] # BIPED=0, BRIND=6, MDBD=10
train_inf = dataset_info(TRAIN_DATA, is_linux=IS_LINUX)
train_dir = train_inf['data_dir']
# Data parameters
parser.add_argument('--input_dir',
type=str,
default=train_dir,
help='the path to the directory with the input data.')
parser.add_argument('--input_val_dir',
type=str,
default=test_inf['data_dir'],
help='the path to the directory with the input data for validation.')
parser.add_argument('--output_dir',
type=str,
default='checkpoints',
help='the path to output the results.')
parser.add_argument('--train_data',
type=str,
choices=DATASET_NAMES,
default=TRAIN_DATA,
help='Name of the dataset.')# TRAIN_DATA,BIPED-B3
parser.add_argument('--test_data',
type=str,
choices=DATASET_NAMES,
default=TEST_DATA,
help='Name of the dataset.')
parser.add_argument('--test_list',
type=str,
default=test_inf['test_list'],
help='Dataset sample indices list.')
parser.add_argument('--train_list',
type=str,
default=train_inf['train_list'],
help='Dataset sample indices list.')
parser.add_argument('--is_testing',type=bool,
default=is_testing,
help='Script in testing mode.')
parser.add_argument('--predict_all',
type=bool,
default=False,
help='True: Generate all LDC outputs in all_edges ')
parser.add_argument('--double_img',
type=bool,
default=False,
help='True: use same 2 imgs changing channels') # Just for test
parser.add_argument('--resume',
type=bool,
default=False,
help='use previous trained data') # Just for test
parser.add_argument('--checkpoint_data',
type=str,
default='16/16_model.pth',# 37 for biped 60 MDBD
help='Checkpoint path.')
parser.add_argument('--test_img_width',
type=int,
default=test_inf['img_width'],
help='Image width for testing.')
parser.add_argument('--test_img_height',
type=int,
default=test_inf['img_height'],
help='Image height for testing.')
parser.add_argument('--res_dir',
type=str,
default='result',
help='Result directory')
parser.add_argument('--log_interval_vis',
type=int,
default=100,
help='The NO B to wait before printing test predictions. 200')
parser.add_argument('--epochs',
type=int,
default=25,
metavar='N',
help='Number of training epochs (default: 25).')
parser.add_argument('--lr', default=5e-5, type=float,
help='Initial learning rate. =5e-5')
parser.add_argument('--lrs', default=[25e-4,5e-4,1e-5], type=float,
help='LR for set epochs')
parser.add_argument('--wd', type=float, default=0., metavar='WD',
help='weight decay (Good 5e-6)')
parser.add_argument('--adjust_lr', default=[6,12,18], type=int,
help='Learning rate step size.') # [6,9,19]
parser.add_argument('--version_notes',
default='LDC-BIPED: B4 Exp 67L3 xavier init normal+ init normal CatsLoss2 Cofusion',
type=str,
help='version notes')
parser.add_argument('--batch_size',
type=int,
default=8,
metavar='B',
help='the mini-batch size (default: 8)')
parser.add_argument('--workers',
default=8,
type=int,
help='The number of workers for the dataloaders.')
parser.add_argument('--tensorboard',type=bool,
default=True,
help='Use Tensorboard for logging.'),
parser.add_argument('--img_width',
type=int,
default=352,
help='Image width for training.') # BIPED 352 BSDS 352/320 MDBD 480
parser.add_argument('--img_height',
type=int,
default=352,
help='Image height for training.') # BIPED 480 BSDS 352/320
parser.add_argument('--channel_swap',
default=[2, 1, 0],
type=int)
parser.add_argument('--resume_chpt',
default='result/resume/',
type=str,
help='resume training')
parser.add_argument('--crop_img',
default=True,
type=bool,
help='If true crop training images, else resize images to match image width and height.')
parser.add_argument('--mean_pixel_values',
default=[103.939,116.779,123.68,137.86],
type=float) # [103.939,116.779,123.68,137.86] [104.00699, 116.66877, 122.67892]
# BRIND mean = [104.007, 116.669, 122.679, 137.86]
# BIPED mean_bgr processed [160.913,160.275,162.239,137.86]
args = parser.parse_args()
return args
def main(args):
"""Main function."""
print(f"Number of GPU's available: {torch.cuda.device_count()}")
print(f"Pytorch version: {torch.__version__}")
# Tensorboard summary writer
tb_writer = None
training_dir = os.path.join(args.output_dir,args.train_data)
os.makedirs(training_dir,exist_ok=True)
checkpoint_path = os.path.join(args.output_dir, args.train_data,args.checkpoint_data)
if args.tensorboard and not args.is_testing:
# from tensorboardX import SummaryWriter # previous torch version
from torch.utils.tensorboard import SummaryWriter # for torch 1.4 or greather
tb_writer = SummaryWriter(log_dir=training_dir)
# saving training settings
training_notes =['LDC, Xavier Normal Init, LR= ' + str(args.lr) + ' WD= '
+ str(args.wd) + ' image size = ' + str(args.img_width)
+ ' adjust LR=' + str(args.adjust_lr) +' LRs= '
+ str(args.lrs)+' Loss Function= CAST-loss2.py '
+ str(time.asctime())+args.version_notes]
info_txt = open(os.path.join(training_dir, 'training_settings.txt'), 'w')
info_txt.write(str(training_notes))
info_txt.close()
# Get computing device
device = torch.device('cpu' if torch.cuda.device_count() == 0
else 'cuda')
# Instantiate model and move it to the computing device
model = LDC().to(device)
# model = nn.DataParallel(model)
ini_epoch =0
if not args.is_testing:
if args.resume:
checkpoint_path2= os.path.join(args.output_dir, 'BIPED-54-B4',args.checkpoint_data)
ini_epoch=8
model.load_state_dict(torch.load(checkpoint_path2,
map_location=device))
dataset_train = BipedDataset(args.input_dir,
img_width=args.img_width,
img_height=args.img_height,
mean_bgr=args.mean_pixel_values[0:3] if len(
args.mean_pixel_values) == 4 else args.mean_pixel_values,
train_mode='train',
arg=args
)
dataloader_train = DataLoader(dataset_train,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers)
dataset_val = TestDataset(args.input_val_dir,
test_data=args.test_data,
img_width=args.test_img_width,
img_height=args.test_img_height,
mean_bgr=args.mean_pixel_values[0:3] if len(
args.mean_pixel_values) == 4 else args.mean_pixel_values,
test_list=args.test_list, arg=args
)
dataloader_val = DataLoader(dataset_val,
batch_size=1,
shuffle=False,
num_workers=args.workers)
# Testing
if args.is_testing:
output_dir = os.path.join(args.res_dir, args.train_data+"2"+ args.test_data)
print(f"output_dir: {output_dir}")
if args.double_img:
# run twice the same image changing the image's channels
testPich(checkpoint_path, dataloader_val, model, device, output_dir, args)
else:
test(checkpoint_path, dataloader_val, model, device, output_dir, args)
# Count parameters:
num_param = count_parameters(model)
print('-------------------------------------------------------')
print('LDC parameters:')
print(num_param)
print('-------------------------------------------------------')
return
criterion1 = cats_loss #bdcn_loss2
criterion2 = bdcn_loss2#cats_loss#f1_accuracy2
criterion = [criterion1,criterion2]
optimizer = optim.Adam(model.parameters(),
lr=args.lr,
weight_decay=args.wd)
# Count parameters:
num_param = count_parameters(model)
print('-------------------------------------------------------')
print('LDC parameters:')
print(num_param)
print('-------------------------------------------------------')
# Main training loop
seed=1021
adjust_lr = args.adjust_lr
k=0
set_lr = args.lrs#[25e-4, 5e-6]
for epoch in range(ini_epoch,args.epochs):
if epoch%7==0:
seed = seed+1000
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
print("------ Random seed applied-------------")
# adjust learning rate
if adjust_lr is not None:
if epoch in adjust_lr:
lr2 = set_lr[k]
for param_group in optimizer.param_groups:
param_group['lr'] = lr2
k+=1
# Create output directories
output_dir_epoch = os.path.join(args.output_dir,args.train_data, str(epoch))
img_test_dir = os.path.join(output_dir_epoch, args.test_data + '_res')
os.makedirs(output_dir_epoch,exist_ok=True)
os.makedirs(img_test_dir,exist_ok=True)
# validate_one_epoch(epoch,
# dataloader_val,
# model,
# device,
# img_test_dir,
# arg=args)
avg_loss =train_one_epoch(epoch,dataloader_train,
model, criterion,
optimizer,
device,
args.log_interval_vis,
tb_writer=tb_writer,
args=args)
validate_one_epoch(epoch,
dataloader_val,
model,
device,
img_test_dir,
arg=args)
# Save model after end of every epoch
torch.save(model.module.state_dict() if hasattr(model, "module") else model.state_dict(),
os.path.join(output_dir_epoch, '{0}_model.pth'.format(epoch)))
if tb_writer is not None:
tb_writer.add_scalar('loss',
avg_loss,
epoch+1)
print('Last learning rate> ', optimizer.param_groups[0]['lr'])
num_param = count_parameters(model)
print('-------------------------------------------------------')
print('LDC parameters:')
print(num_param)
print('-------------------------------------------------------')
if __name__ == '__main__':
args = parse_args()
main(args)