forked from apachecn/ailearning
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request apachecn#508 from jiangzhonglian/master
更新网站的基本信息(删除过时内容)
- Loading branch information
Showing
311 changed files
with
25 additions
and
28,329 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,19 +1,19 @@ | ||
+ [第1章_基础知识](blog/ml/1.机器学习基础.md) | ||
+ [第2章_K近邻算法](blog/ml/2.k-近邻算法.md) | ||
+ [第3章_决策树算法](blog/ml/3.决策树.md) | ||
+ [第4章_朴素贝叶斯](blog/ml/4.朴素贝叶斯.md) | ||
+ [第5章_逻辑回归](blog/ml/5.Logistic回归.md) | ||
+ [第6章_支持向量机](blog/ml/6.支持向量机.md) | ||
+ [支持向量机的几个通俗理解](blog/ml/6.1.支持向量机的几个通俗理解.md) | ||
+ [第7章_集成方法](blog/ml/7.集成方法-随机森林和AdaBoost.md) | ||
+ [第8章_回归](blog/ml/8.回归.md) | ||
+ [第9章_树回归](blog/ml/9.树回归.md) | ||
+ [第10章_KMeans聚类](blog/ml/10.k-means聚类.md) | ||
+ [第11章_Apriori算法](blog/ml/11.使用Apriori算法进行关联分析.md) | ||
+ [第12章_FP-growth算法](blog/ml/12.使用FP-growth算法来高效发现频繁项集.md) | ||
+ [第13章_PCA降维](blog/ml/13.利用PCA来简化数据.md) | ||
+ [第14章_SVD简化数据](blog/ml/14.利用SVD简化数据.md) | ||
+ [第15章_大数据与MapReduce](blog/ml/15.大数据与MapReduce.md) | ||
+ [第16章_推荐系统](blog/ml/16.推荐系统.md) | ||
+ [为何录制教学版视频](blog/why-to-record-study-ml-video.md) | ||
+ [加入我们](blog/join-us.md) | ||
+ [第1章_基础知识](docs/ml/1.机器学习基础.md) | ||
+ [第2章_K近邻算法](docs/ml/2.k-近邻算法.md) | ||
+ [第3章_决策树算法](docs/ml/3.决策树.md) | ||
+ [第4章_朴素贝叶斯](docs/ml/4.朴素贝叶斯.md) | ||
+ [第5章_逻辑回归](docs/ml/5.Logistic回归.md) | ||
+ [第6章_支持向量机](docs/ml/6.支持向量机.md) | ||
+ [支持向量机的几个通俗理解](docs/ml/6.1.支持向量机的几个通俗理解.md) | ||
+ [第7章_集成方法](docs/ml/7.集成方法-随机森林和AdaBoost.md) | ||
+ [第8章_回归](docs/ml/8.回归.md) | ||
+ [第9章_树回归](docs/ml/9.树回归.md) | ||
+ [第10章_KMeans聚类](docs/ml/10.k-means聚类.md) | ||
+ [第11章_Apriori算法](docs/ml/11.使用Apriori算法进行关联分析.md) | ||
+ [第12章_FP-growth算法](docs/ml/12.使用FP-growth算法来高效发现频繁项集.md) | ||
+ [第13章_PCA降维](docs/ml/13.利用PCA来简化数据.md) | ||
+ [第14章_SVD简化数据](docs/ml/14.利用SVD简化数据.md) | ||
+ [第15章_大数据与MapReduce](docs/ml/15.大数据与MapReduce.md) | ||
+ [第16章_推荐系统](docs/ml/16.推荐系统.md) | ||
+ [为何录制教学版视频](docs/why-to-record-study-ml-video.md) | ||
+ [加入我们](docs/join-us.md) |
Oops, something went wrong.