-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathpredict.py
115 lines (89 loc) · 3.36 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import tempfile
import torch
from tqdm import tqdm
from PIL import Image
import torchvision
import numpy as np
from cog import BasePredictor, Path, Input
from networks.generator import Generator
class Predictor(BasePredictor):
def setup(self):
self.size = 256
channel_multiplier = 1
latent_dim_style = 512
latent_dim_motion = 20
model_weights = {
"vox": torch.load(
"checkpoints/vox.pt", map_location=lambda storage, loc: storage
)["gen"],
"taichi": torch.load(
"checkpoints/taichi.pt", map_location=lambda storage, loc: storage
)["gen"],
"ted": torch.load(
"checkpoints/ted.pt", map_location=lambda storage, loc: storage
)["gen"],
}
self.gen_models = {
k: Generator(
self.size, latent_dim_style, latent_dim_motion, channel_multiplier
).cuda()
for k in model_weights.keys()
}
for k, v in self.gen_models.items():
v.load_state_dict(model_weights[k])
v.eval()
def predict(
self,
img_source: Path = Input(
description="Input source image.",
),
driving_video: Path = Input(
description="Choose a driving video.",
),
model: str = Input(
choices=["vox", "taichi", "ted"],
default="vox",
description="Choose a dataset.",
),
) -> Path:
gen = self.gen_models[model]
print("==> loading data")
img_source = img_preprocessing(str(img_source), self.size).cuda()
vid_target, fps = vid_preprocessing(str(driving_video))
vid_target = vid_target.cuda()
out_path = Path(tempfile.mkdtemp()) / "output.mp4"
with torch.no_grad():
vid_target_recon = []
if model == "ted":
h_start = None
else:
h_start = gen.enc.enc_motion(vid_target[:, 0, :, :, :])
for i in tqdm(range(vid_target.size(1))):
img_target = vid_target[:, i, :, :, :]
img_recon = gen(img_source, img_target, h_start)
vid_target_recon.append(img_recon.unsqueeze(2))
vid_target_recon = torch.cat(vid_target_recon, dim=2)
save_video(vid_target_recon, str(out_path), fps)
return out_path
def load_image(filename, size):
img = Image.open(filename).convert("RGB")
img = img.resize((size, size))
img = np.asarray(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0
def img_preprocessing(img_path, size):
img = load_image(img_path, size) # [0, 1]
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
return imgs_norm
def vid_preprocessing(vid_path):
vid_dict = torchvision.io.read_video(vid_path, pts_unit="sec")
vid = vid_dict[0].permute(0, 3, 1, 2).unsqueeze(0)
fps = vid_dict[2]["video_fps"]
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
return vid_norm, fps
def save_video(vid_target_recon, save_path, fps):
vid = vid_target_recon.permute(0, 2, 3, 4, 1)
vid = vid.clamp(-1, 1).cpu()
vid = ((vid - vid.min()) / (vid.max() - vid.min()) * 255).type("torch.ByteTensor")
torchvision.io.write_video(save_path, vid[0], fps=fps)