forked from NVIDIA/MinkowskiEngine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoordinate_map_manager.hpp
704 lines (606 loc) · 25.6 KB
/
coordinate_map_manager.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/*
* Copyright (c) 2020 NVIDIA CORPORATION.
* Copyright (c) 2018-2020 Chris Choy (chrischoy@ai.stanford.edu)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Please cite "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural
* Networks", CVPR'19 (https://arxiv.org/abs/1904.08755) if you use any part
* of the code.
*/
#ifndef COORDINATE_MAP_MANAGER
#define COORDINATE_MAP_MANAGER
#include "coordinate_map.hpp"
#include "coordinate_map_cpu.hpp"
#include "coordinate_map_key.hpp"
#include "errors.hpp"
#include "types.hpp"
#include "utils.hpp"
#ifndef CPU_ONLY
#include "coordinate_map_gpu.cuh"
#include "kernel_map.cuh"
#endif
#include <algorithm>
#include <array>
#include <functional>
#include <iostream>
#include <iterator>
#include <omp.h>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
#include <robin_hood.h>
#include <torch/extension.h>
namespace minkowski {
namespace detail {
template <template <typename T, template <typename Q> class A>
class CoordinateMapType>
struct is_cpu_coordinate_map : std::false_type {};
template <> struct is_cpu_coordinate_map<CoordinateMapCPU> : std::true_type {};
template <typename T1, typename T2> void copy_types(const T1 &src, T2 &dst) {
size_t curr_it = 0;
for (const auto s : src)
dst[curr_it++] = s;
}
template <default_types::index_type V>
default_types::stride_type _fill_vec(size_t const len) {
default_types::stride_type vec(len);
std::for_each(vec.begin(), vec.end(), [](auto &i) { i = V; });
return vec;
}
} // namespace detail
template <typename coordinate_type, typename coordinate_field_type,
template <typename C> class TemplatedAllocator,
template <typename T, template <typename Q> class A>
class CoordinateMapType>
class CoordinateMapManager {
public:
using size_type = default_types::size_type;
using index_type = default_types::index_type;
using stride_type = default_types::stride_type;
using map_type = CoordinateMapType<coordinate_type, TemplatedAllocator>;
#ifndef CPU_ONLY
using field_map_type = typename std::conditional<
detail::is_cpu_coordinate_map<CoordinateMapType>::value,
CoordinateFieldMapCPU<coordinate_field_type, coordinate_type,
TemplatedAllocator>,
CoordinateFieldMapGPU<coordinate_field_type, coordinate_type,
TemplatedAllocator>>::type;
#else
using field_map_type =
CoordinateFieldMapCPU<coordinate_field_type, coordinate_type,
TemplatedAllocator>;
#endif
using self_type = CoordinateMapManager<coordinate_type, coordinate_field_type,
TemplatedAllocator, CoordinateMapType>;
using map_collection_type = std::map<coordinate_map_key_type, map_type,
coordinate_map_key_comparator>;
using kernel_map_type =
#ifndef CPU_ONLY
typename std::conditional<
detail::is_cpu_coordinate_map<CoordinateMapType>::value,
cpu_kernel_map,
gpu_kernel_map<index_type, TemplatedAllocator<char>>>::type;
#else
cpu_kernel_map;
#endif
using kernel_map_reference_type =
#ifndef CPU_ONLY
typename std::conditional<
detail::is_cpu_coordinate_map<CoordinateMapType>::value,
cpu_kernel_map,
gpu_kernel_map<index_type, TemplatedAllocator<char>>>::type;
#else
cpu_kernel_map_reference;
#endif
public:
// allocator backend will be ignored when coordinate map backend is CPU
CoordinateMapManager(
MinkowskiAlgorithm::Mode algo = MinkowskiAlgorithm::DEFAULT,
size_type num_threads = 0)
: m_algorithm(algo) {
if (num_threads > 0) {
// Doesn't seem to work. use `export OMP_NUM_THREADS=N;` in bash.
omp_set_dynamic(0);
omp_set_num_threads(num_threads);
}
switch (m_algorithm) {
case MinkowskiAlgorithm::DEFAULT: {
m_kernel_map_mode = CUDAKernelMapMode::SPEED_OPTIMIZED;
m_gpu_default_occupancy = 25;
break;
}
case MinkowskiAlgorithm::MEMORY_EFFICIENT: {
m_kernel_map_mode = CUDAKernelMapMode::MEMORY_EFFICIENT;
m_gpu_default_occupancy = 50;
break;
}
case MinkowskiAlgorithm::SPEED_OPTIMIZED: {
m_kernel_map_mode = CUDAKernelMapMode::SPEED_OPTIMIZED;
m_gpu_default_occupancy = 25;
break;
}
}
}
~CoordinateMapManager() {}
/****************************************************************************
* Coordinate generation, modification, and initialization entry functions
****************************************************************************/
py::object insert_field(at::Tensor const &th_coordinate,
stride_type const tensor_stride,
std::string const string_id = "");
/*
* New coordinate map initialzation function.
*
* returns key and map, inverse map
*/
std::pair<py::object, std::pair<at::Tensor, at::Tensor>>
field_to_sparse_insert_and_map(CoordinateMapKey const *p_in_field_map_key,
stride_type const sparse_tensor_stride,
std::string const sparse_string_id = "");
std::pair<at::Tensor, at::Tensor>
field_to_sparse_map(CoordinateMapKey const *p_in_field_map_key,
CoordinateMapKey const *p_out_sparse_map_key);
/*
* New coordinate map initialzation function.
*
* returns key and map, inverse map
*/
std::pair<py::object, std::pair<at::Tensor, at::Tensor>>
insert_and_map(at::Tensor const &th_coordinate,
stride_type const tensor_stride,
std::string const string_id = "");
/*
* Generate a new coordinate_map if it doesn't exists
*/
// returns out_map_key and flag which is true if a new map is created
std::pair<coordinate_map_key_type, bool>
stride(coordinate_map_key_type const &in_map_key,
stride_type const &kernel_stride, std::string const string_id = "");
// python-side stride function
py::object py_stride(CoordinateMapKey const *in_map_key,
stride_type const &kernel_stride,
std::string const string_id = "") {
auto key =
std::get<0>(stride(in_map_key->get_key(), kernel_stride, string_id));
return py::cast(new CoordinateMapKey(key.first.size() + 1, key));
}
// stride region: new coordinate generation
std::pair<coordinate_map_key_type, bool>
stride_region(coordinate_map_key_type const &in_map_key,
cpu_kernel_region<coordinate_type> &kernel,
stride_type const &out_tensor_stride,
bool const expand_coordinates);
// origin coordinate map creation
std::pair<coordinate_map_key_type, bool> origin();
std::pair<coordinate_map_key_type, bool> origin_field();
// pruning
coordinate_map_key_type prune(coordinate_map_key_type const &in_key,
bool const *keep_begin, bool const *keep_end);
// python-side stride function
py::object py_origin() {
auto map_key_bool = origin();
LOG_DEBUG("Return origin map key");
return py::cast(new CoordinateMapKey(map_key_bool.first.first.size() + 1,
map_key_bool.first));
}
// python-side stride function
py::object py_origin_field() {
auto map_key_bool = origin_field();
LOG_DEBUG("Return origin map key");
return py::cast(new CoordinateMapKey(map_key_bool.first.first.size() + 1,
map_key_bool.first));
}
// Merge
coordinate_map_key_type
merge(std::vector<coordinate_map_key_type> const &map_keys);
std::pair<coordinate_map_key_type, std::vector<at::Tensor>>
union_map(std::vector<coordinate_map_key_type> const &map_keys);
std::vector<at::Tensor>
union_map_th(std::vector<CoordinateMapKey *> const &map_keys,
CoordinateMapKey *p_out_key);
/****************************************************************************
* Tensor field related operations
****************************************************************************/
py::object insert(at::Tensor const &coordinates);
/****************************************************************************
* Coordinate management helper functions
****************************************************************************/
bool insert(coordinate_map_key_type map_key, map_type &map) {
LOG_DEBUG("insert map with tensor_stride", map_key.first);
auto result = m_coordinate_maps.insert(
std::make_pair<coordinate_map_key_type, map_type>(std::move(map_key),
std::move(map)));
LOG_DEBUG("map insertion", result.second);
return result.second;
}
bool insert_field_map(coordinate_map_key_type map_key, field_map_type &map) {
LOG_DEBUG("insert map with tensor_stride", map_key.first);
auto result = m_field_coordinates.insert(
std::make_pair<coordinate_map_key_type, field_map_type>(
std::move(map_key), std::move(map)));
LOG_DEBUG("map insertion", result.second);
return result.second;
}
typename map_collection_type::iterator
find(coordinate_map_key_type const &map_key) {
return m_coordinate_maps.find(map_key);
}
typename map_collection_type::const_iterator map_end() const {
return m_coordinate_maps.cend();
}
inline bool exists(coordinate_map_key_type const &key) const noexcept {
return m_coordinate_maps.find(key) != m_coordinate_maps.end();
}
inline bool exists_field(coordinate_map_key_type const &key) const noexcept {
return m_field_coordinates.find(key) != m_field_coordinates.end();
}
inline bool exists_field_to_sparse(
coordinate_map_key_type const &field_key,
coordinate_map_key_type const &sparse_key) const noexcept {
auto key = std::pair<coordinate_map_key_type, coordinate_map_key_type>{
field_key, sparse_key};
return m_field_to_sparse_maps.find(key) != m_field_to_sparse_maps.end();
}
std::vector<py::object>
field_to_sparse_keys(coordinate_map_key_type const &field_key) const {
std::vector<py::object> return_keys;
for (auto const &elem : m_field_to_sparse_maps) {
if (elem.first.first == field_key) {
auto const &tensor_key = elem.first.second;
return_keys.push_back(py::cast(
new CoordinateMapKey(tensor_key.first.size() + 1, tensor_key)));
}
}
return return_keys;
}
// when the key is the python coordinate map key
inline bool exists(CoordinateMapKey const *p_key) const {
// key set exception
return exists(p_key->get_key());
}
// when the key is the python coordinate map key
inline bool exists_field(CoordinateMapKey const *p_key) const {
// key set exception
return exists_field(p_key->get_key());
}
inline bool
exists_field_to_sparse(CoordinateMapKey const *p_field_key,
CoordinateMapKey const *p_sparse_key) const {
// key set exception
return exists_field_to_sparse(p_field_key->get_key(),
p_sparse_key->get_key());
}
inline size_type size(coordinate_map_key_type const &key) const {
auto const it = m_coordinate_maps.find(key);
auto const field_it = m_field_coordinates.find(key);
ASSERT(it != m_coordinate_maps.end() ||
field_it != m_field_coordinates.end(),
ERROR_MAP_NOT_FOUND);
if (it != m_coordinate_maps.end())
return it->second.size();
else
return field_it->second.size();
}
inline size_type size(CoordinateMapKey const *p_key) const {
return size(p_key->get_key());
}
inline size_type capacity(coordinate_map_key_type const &key) const {
auto it = m_coordinate_maps.find(key);
ASSERT(it != m_coordinate_maps.end(), ERROR_MAP_NOT_FOUND);
return it->second.capacity();
}
at::Tensor get_coordinates(CoordinateMapKey const *p_key) const;
at::Tensor get_coordinate_field(CoordinateMapKey const *p_key) const;
std::pair<at::Tensor, at::Tensor>
get_field_to_sparse_map(CoordinateMapKey const *p_field_key,
CoordinateMapKey const *p_sparse_key) const;
std::vector<py::object>
get_coordinate_map_keys(stride_type const tensor_stride) const {
std::vector<py::object> keys;
for (auto it = m_coordinate_maps.begin(); it != m_coordinate_maps.end();
++it) {
coordinate_map_key_type const &key = it->first;
if (key.first == tensor_stride) {
keys.push_back(
py::cast(new CoordinateMapKey(key.first.size() + 1, key)));
}
}
return keys;
}
std::string print_key(coordinate_map_key_type const &key) const {
Formatter out;
out << ArrToString(key.first);
if (key.second.length() > 0)
out << "-" << key.second;
return out.str();
}
std::string to_string(CoordinateMapKey const *p_key) const {
auto it = m_coordinate_maps.find(p_key->get_key());
ASSERT(it != m_coordinate_maps.end(), ERROR_MAP_NOT_FOUND);
return print_key(it->first) + " : " + it->second.to_string();
}
std::string to_string() const {
Formatter o;
for (auto const &kv : m_coordinate_maps) {
o << "\t" << print_key(kv.first) << ":\t" << kv.second.to_string()
<< "\n";
}
if (m_field_coordinates.size() > 0) {
for (auto const &kv : m_field_coordinates) {
o << "\tTensorField " << print_key(kv.first) << ":\t"
<< kv.second.to_string() << "\n";
}
}
for (auto const &kv : m_kernel_maps) {
o << "\t" << print_key(std::get<0>(kv.first)) << "->"
<< print_key(std::get<1>(kv.first)) << ":\t" << kv.second << "\n";
}
return o.str();
}
MinkowskiAlgorithm::Mode algorithm() const { return m_algorithm; }
/****************************************************************************
* Kernel map related functions
****************************************************************************/
// return kernel map. for cpu it is {in maps, out maps}.
// For gpu it could be {in maps, out maps}, or {kernel index, in map, out map}
kernel_map_type const &
kernel_map(CoordinateMapKey const *py_in_coords_key, //
CoordinateMapKey const *py_out_coords_key, //
stride_type const &kernel_size, //
stride_type const &kernel_stride, //
stride_type const &kernel_dilation, //
RegionType::Type const region_type, //
at::Tensor const &offsets, bool is_transpose, bool is_pool);
// for kernel size 0
kernel_map_type const &kernel_map(CoordinateMapKey const *py_in_coords_key,
CoordinateMapKey const *py_out_coords_key);
kernel_map_type const &origin_map(CoordinateMapKey const *py_out_coords_key);
kernel_map_type const &
origin_field_map(CoordinateMapKey const *py_out_coords_key);
// return kernel map. for cpu it is {in maps, out maps}.
// For gpu it could be {in maps, out maps}, or {kernel index, in map, out map}
std::unordered_map<int64_t, at::Tensor>
kernel_map_th(CoordinateMapKey const *py_in_coords_key, //
CoordinateMapKey const *py_out_coords_key, //
stride_type const &kernel_size, //
stride_type const &kernel_stride, //
stride_type const &kernel_dilation, //
RegionType::Type const region_type, //
at::Tensor const &offsets, bool is_transpose, bool is_pool);
// interpolation map
std::vector<at::Tensor>
interpolation_map_weight(at::Tensor const &tfield,
CoordinateMapKey const *py_in_coords_key);
std::pair<at::Tensor, std::vector<at::Tensor>>
origin_map_th(CoordinateMapKey const *py_out_coords_key);
std::pair<at::Tensor, std::vector<at::Tensor>>
origin_field_map_th(CoordinateMapKey const *py_out_coords_key);
std::pair<at::Tensor, at::Tensor>
stride_map_th(CoordinateMapKey const *p_in_map_key,
CoordinateMapKey const *p_strided_map_key);
size_t origin_map_size() {
ASSERT(m_coordinate_maps.size() > 0 or m_field_coordinates.size() > 0,
"No coordinate map found.");
if (m_coordinate_maps.size() > 0) {
auto const key = origin().first;
return m_coordinate_maps.find(key)->second.size();
} else {
auto const key = origin_field().first;
return m_coordinate_maps.find(key)->second.size();
}
}
coordinate_map_key_type get_random_string_id(stride_type const &tensor_stride,
std::string string_id) {
coordinate_map_key_type key = std::make_pair(
tensor_stride, string_id.size() > 0 ? string_id + '-' + random_string(5)
: random_string(5));
while (m_coordinate_maps.find(key) != m_coordinate_maps.end()) {
key =
std::make_pair(tensor_stride, string_id.size() > 0
? string_id + '-' + random_string(5)
: random_string(5));
}
return key;
}
private:
void coordinate_map_key_check(CoordinateMapKey const *p_map_key) const {
ASSERT(p_map_key != nullptr, "Input coordinate map key not defined.");
ASSERT(p_map_key->is_key_set(), "Key not defined.");
ASSERT(exists(p_map_key->get_key()), "Key does not exist.");
}
// random string generator
std::string random_string(size_t length) {
auto randchar = []() -> char {
const char charset[] = "0123456789"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz";
const size_t max_index = (sizeof(charset) - 1);
return charset[rand() % max_index];
};
std::string str(length, 0);
std::generate_n(str.begin(), length, randchar);
return str;
}
kernel_map_key_type
origin_map_key(coordinate_map_key_type const &in_key) const {
map_type const &random_map = m_coordinate_maps.begin()->second;
stride_type zero_vec(random_map.coordinate_size() - 1);
std::for_each(zero_vec.begin(), zero_vec.end(), [](auto &i) { i = 0; });
coordinate_map_key_type origin_key = std::make_pair(zero_vec, "");
return std::make_tuple(in_key, origin_key, // maps
zero_vec, zero_vec, zero_vec, // kernels
RegionType::HYPER_CUBE, false, false);
}
public:
size_t m_gpu_default_occupancy;
#ifndef CPU_ONLY
void *allocate(size_type n) { return m_allocator.allocate(n); }
void deallocate(void *p, size_type n) {
m_allocator.deallocate((char *)p, n);
}
#endif
private:
// NOTE: operator[] required mapped_type(), which is not defined.
//
// CoordinateMapManager owns the coordinate maps
std::map<coordinate_map_key_type, map_type, coordinate_map_key_comparator>
m_coordinate_maps;
// CoordinateMapManager managed coordinates
std::map<coordinate_map_key_type, field_map_type,
coordinate_map_key_comparator>
m_field_coordinates;
// CoordinateMapManager owns the kernel maps
std::unordered_map<kernel_map_key_type, kernel_map_type,
kernel_map_key_hasher<coordinate_map_key_hasher>>
m_kernel_maps;
std::unordered_map<kernel_map_key_type, kernel_map_type,
kernel_map_key_hasher<coordinate_map_key_hasher>>
m_field_kernel_maps;
std::unordered_map<
const std::pair<coordinate_map_key_type, coordinate_map_key_type>,
const std::pair<at::Tensor, at::Tensor>,
field_to_sparse_map_key_hasher<coordinate_map_key_hasher>>
m_field_to_sparse_maps;
#ifndef CPU_ONLY
TemplatedAllocator<char> m_allocator;
#endif
// kernel map mode
CUDAKernelMapMode::Mode m_kernel_map_mode;
// Algorithm index
MinkowskiAlgorithm::Mode m_algorithm;
}; // coordsmanager
namespace detail {
template <typename coordinate_type, typename coordinate_field_type,
template <typename C> class TemplatedAllocator,
template <typename T, template <typename Q> class A>
class CoordinateMapType,
typename field_map_type>
struct insert_field_functor {
void operator()(
coordinate_map_key_type &map_key, at::Tensor const &th_coordinate,
CoordinateMapManager<coordinate_type, coordinate_field_type,
TemplatedAllocator, CoordinateMapType> &manager);
};
// a partial specialization functor for insertion
template <typename coordinate_type, typename coordinate_field_type,
template <typename C> class TemplatedAllocator,
template <typename T, template <typename Q> class A>
class CoordinateMapType>
struct insert_and_map_functor {
std::pair<at::Tensor, at::Tensor> operator()(
coordinate_map_key_type &map_key, at::Tensor const &th_coordinate,
CoordinateMapManager<coordinate_type, coordinate_field_type,
TemplatedAllocator, CoordinateMapType> &manager);
};
// a partial specialization functor for kernel map generation
template <typename coordinate_type,
template <typename C> class TemplatedAllocator,
template <typename T, template <typename Q> class A>
class CoordinateMapType,
typename kernel_map_type>
struct kernel_map_functor {
kernel_map_type operator()(
CoordinateMapType<coordinate_type, TemplatedAllocator> const &in_map,
CoordinateMapType<coordinate_type, TemplatedAllocator> const &out_map,
CUDAKernelMapMode::Mode kernel_map_mode,
cpu_kernel_region<coordinate_type> &kernel);
};
// a partial specialization functor for stride map generation
template <typename coordinate_type,
template <typename C> class TemplatedAllocator,
template <typename T, template <typename Q> class A>
class CoordinateMapType,
typename kernel_map_type>
struct stride_map_functor {
using stride_type = default_types::stride_type;
kernel_map_type operator()(
CoordinateMapType<coordinate_type, TemplatedAllocator> const &in_map,
CoordinateMapType<coordinate_type, TemplatedAllocator> const &out_map,
stride_type const &kernel);
};
// a partial specialization functor for stride map generation
template <typename coordinate_type,
template <typename C> class TemplatedAllocator,
template <typename T, template <typename Q> class A>
class CoordinateMapType,
typename kernel_map_type>
struct empty_map_functor {
using stride_type = default_types::stride_type;
kernel_map_type operator()();
};
// a partial specialization functor for kernel map in/out swap
template <typename kernel_map_type> struct swap_in_out_map_functor {
kernel_map_type operator()(kernel_map_type const &kernel_map);
};
// a partial specialization functor for origin_map
template <typename coordinate_type,
template <typename C> class TemplatedAllocator,
template <typename T, template <typename Q> class A>
class CoordinateMapType,
typename kernel_map_type>
struct origin_map_functor {
std::pair<at::Tensor, std::vector<at::Tensor>>
operator()(CoordinateMapType<coordinate_type, TemplatedAllocator> const
&origin_coordinate_map,
kernel_map_type const &origin_map);
};
// a partial specialization functor for stride map
template <typename coordinate_type,
template <typename C> class TemplatedAllocator,
template <typename T, template <typename Q> class A>
class CoordinateMapType,
typename kernel_map_type>
struct stride_map2tensor_functor {
std::pair<at::Tensor, at::Tensor>
operator()(kernel_map_type const &origin_map);
};
template <typename coordinate_type,
template <typename C> class TemplatedAllocator,
template <typename T, template <typename Q> class A>
class CoordinateMapType,
typename kernel_map_type>
struct kernel_map_to_tensors {
using index_type = default_types::index_type;
std::unordered_map<int64_t, at::Tensor>
operator()(kernel_map_type const &kernel_map);
};
} // namespace detail
// type defs
template <typename coordinate_type>
using cpu_manager_type =
CoordinateMapManager<coordinate_type, default_types::ccoordinate_type,
std::allocator, CoordinateMapCPU>;
#ifndef CPU_ONLY
template <typename coordinate_type,
template <typename C> class TemplatedAllocator>
using gpu_manager_type =
CoordinateMapManager<coordinate_type, default_types::ccoordinate_type,
TemplatedAllocator, CoordinateMapGPU>;
template <typename coordinate_type>
using gpu_default_manager_type =
gpu_manager_type<coordinate_type, detail::default_allocator>;
template <typename coordinate_type>
using gpu_c10_manager_type =
gpu_manager_type<coordinate_type, detail::c10_allocator>;
#endif
} // namespace minkowski
#endif // COORDINATE_MAP_MANAGER