forked from NVIDIA/MinkowskiEngine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvolution_kernel.cuh
70 lines (64 loc) · 3.05 KB
/
convolution_kernel.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/* Copyright (c) Chris Choy (chrischoy@ai.stanford.edu).
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Please cite "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural
* Networks", CVPR'19 (https://arxiv.org/abs/1904.08755) if you use any part
* of the code.
*/
#ifndef CONVOLUTION_CUH
#define CONVOLUTION_CUH
#include <array>
#include <vector>
#include "gpu.cuh"
#include "kernel_map.cuh"
#include "math_functions.cuh"
#include "types.hpp"
namespace minkowski {
template <typename Dtype, typename Itype, typename ByteAllocator>
void ConvolutionForwardKernelGPU(
Dtype const *d_in_feat, //
default_types::size_type const in_nchannel, //
Dtype *d_out_feat, //
default_types::size_type const out_nchannel, //
Dtype *d_kernel, gpu_kernel_map<Itype, ByteAllocator> const &kernel_map,
default_types::size_type const in_nrows, //
default_types::size_type const out_nrows, //
ByteAllocator &allocator, //
MinkowskiAlgorithm::Mode const algo_index, //
ConvolutionMode::Type const convolution_mode, //
cublasHandle_t cuhandle, cudaStream_t stream);
template <typename Dtype, typename Itype, typename ByteAllocator>
void ConvolutionBackwardKernelGPU(
Dtype const *d_in_feat, //
Dtype *d_grad_in_feat, //
default_types::size_type const in_nchannel, //
Dtype const *d_grad_out_feat, //
default_types::size_type const out_nchannel, //
Dtype const *d_kernel, //
Dtype *d_grad_kernel, //
gpu_kernel_map<Itype, ByteAllocator> const &kernel_map,
default_types::size_type const in_nrows, //
default_types::size_type const out_nrows, //
ByteAllocator &allocator, //
MinkowskiAlgorithm::Mode const algo_index, //
ConvolutionMode::Type const convolution_mode, //
cublasHandle_t cuhandle, cudaStream_t stream);
} // end namespace minkowski
#endif // end CONVOLUTION_CUH