-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
118 lines (101 loc) · 3.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import argparse
import collections
import warnings
import numpy as np
import torch
import scripts.loss as module_loss
import scripts.metric as module_metric
import scripts.model as module_arch
from scripts.trainer import Trainer
from scripts.utils import prepare_device
from scripts.utils.object_loading import get_dataloaders
from scripts.utils.parse_config import ConfigParser
warnings.filterwarnings("ignore", category=UserWarning)
# fix random seeds for reproducibility
SEED = 123
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main(config):
# create logger "train"
logger = config.get_logger("train")
# midi_encoder
midi_encoder = config.get_midi_encoder()
logger.info(f'Tokenizer contains {len(midi_encoder)} tokens')
# setup data_loader instances
dataloaders = get_dataloaders(config, midi_encoder)
# build model architecture, then print to console
model = config.init_obj(
config["arch"],
module_arch,
tokenizer=midi_encoder
)
logger.info(model)
# prepare for (multi-device) GPU training
device, device_ids = prepare_device(config["n_gpu"])
model = model.to(device)
# logger.info(f'Number of parameters: {sum(p.numel() for p in model.parameters())}')
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
# get function handles of loss and metrics
loss_module = config.init_obj(
config["loss"],
module_loss,
ignore_index=midi_encoder["PAD_None"]
).to(device)
metrics = [
config.init_obj(metric_dict, module_metric)
for metric_dict in config["metrics"]
]
# build optimizer, learning rate scheduler. delete every line containing lr_scheduler for
# disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj(config["optimizer"], torch.optim, trainable_params)
lr_scheduler = config.init_obj(config["lr_scheduler"], torch.optim.lr_scheduler, optimizer)
trainer = Trainer(
model,
loss_module,
metrics,
optimizer,
midi_encoder=midi_encoder,
config=config,
device=device,
dataloaders=dataloaders,
lr_scheduler=lr_scheduler,
len_epoch=config["trainer"].get("len_epoch", None)
)
trainer.train()
if __name__ == "__main__":
args = argparse.ArgumentParser(description="PyTorch Template")
args.add_argument(
"-c",
"--config",
default=None,
type=str,
help="config file path (default: None)",
)
args.add_argument(
"-r",
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: None)",
)
args.add_argument(
"-d",
"--device",
default=None,
type=str,
help="indices of GPUs to enable (default: all)",
)
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple("CustomArgs", "flags type target")
options = [
CustomArgs(["--lr", "--learning_rate"], type=float, target="optimizer;args;lr"),
CustomArgs(
["--bs", "--batch_size"], type=int, target="data_loader;args;batch_size"
),
]
config = ConfigParser.from_args(args, options)
main(config)