-
Notifications
You must be signed in to change notification settings - Fork 16
/
DataLoader.m
226 lines (208 loc) · 8.96 KB
/
DataLoader.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
classdef DataLoader < handle
%object that load benchmark dataset with static pre-processing functions
properties
signature; %used to discriminate dataset and used parameters, also used as save name
Xtrain;
Xval;
Xtest;
Ytrain;
Yval;
Ytest;
end
methods
function self = DataLoader()
end
function [] = loadNaturalImage(self)
load(fullfile(Config.data_dir_path,'whitened_lc_patches.mat')) % data: 196x160000 natural image patches
self.Xtrain = data;
end
end
methods(Static)
function [hdr, record] = edfRead(fname, varargin)
% Read European Data Format file into MATLAB
%
% [hdr, record] = edfRead(fname)
% Reads data from ALL RECORDS of file fname ('*.edf'). Header
% information is returned in structure hdr, and the signals
% (waveforms) are returned in structure record, with waveforms
% associated with the records returned as fields titled 'data' of
% structure record.
%
% [...] = edfRead(fname, 'assignToVariables', assignToVariables)
% Triggers writing of individual output variables, as defined by
% field 'labels', into the caller workspace.
%
% FORMAT SPEC: Source: http://www.edfplus.info/specs/edf.html SEE ALSO:
% http://www.dpmi.tu-graz.ac.at/~schloegl/matlab/eeg/edf_spec.htm
%
% The first 256 bytes of the header record specify the version number of
% this format, local patient and recording identification, time information
% about the recording, the number of data records and finally the number of
% signals (ns) in each data record. Then for each signal another 256 bytes
% follow in the header record, each specifying the type of signal (e.g.
% EEG, body temperature, etc.), amplitude calibration and the number of
% samples in each data record (from which the sampling frequency can be
% derived since the duration of a data record is also known). In this way,
% the format allows for different gains and sampling frequencies for each
% signal. The header record contains 256 + (ns * 256) bytes.
%
% Following the header record, each of the subsequent data records contains
% 'duration' seconds of 'ns' signals, with each signal being represented by
% the specified (in the header) number of samples. In order to reduce data
% size and adapt to commonly used software for acquisition, processing and
% graphical display of polygraphic signals, each sample value is
% represented as a 2-byte integer in 2's complement format. Figure 1 shows
% the detailed format of each data record.
%
% DATA SOURCE: Signals of various types (including the sample signal used
% below) are available from PHYSIONET: http://www.physionet.org/
%
%
% % EXAMPLE 1:
% % Read all waveforms/data associated with file 'ecgca998.edf':
%
% [header, recorddata] = edfRead('ecgca998.edf');
%
% % EXAMPLE 2:
% % Read records 3 and 5, associated with file 'ecgca998.edf':
%
% header = edfRead('ecgca998.edf','AssignToVariables',true);
% % Header file specifies data labels 'label_1'...'label_n'; these are
% % created as variables in the caller workspace.
%
% Coded 8/27/09 by Brett Shoelson, PhD
% brett.shoelson@mathworks.com
% Copyright 2009 - 2012 MathWorks, Inc.
% HEADER RECORD
% 8 ascii : version of this data format (0)
% 80 ascii : local patient identification
% 80 ascii : local recording identification
% 8 ascii : startdate of recording (dd.mm.yy)
% 8 ascii : starttime of recording (hh.mm.ss)
% 8 ascii : number of bytes in header record
% 44 ascii : reserved
% 8 ascii : number of data records (-1 if unknown)
% 8 ascii : duration of a data record, in seconds
% 4 ascii : number of signals (ns) in data record
% ns * 16 ascii : ns * label (e.g. EEG FpzCz or Body temp)
% ns * 80 ascii : ns * transducer type (e.g. AgAgCl electrode)
% ns * 8 ascii : ns * physical dimension (e.g. uV or degreeC)
% ns * 8 ascii : ns * physical minimum (e.g. -500 or 34)
% ns * 8 ascii : ns * physical maximum (e.g. 500 or 40)
% ns * 8 ascii : ns * digital minimum (e.g. -2048)
% ns * 8 ascii : ns * digital maximum (e.g. 2047)
% ns * 80 ascii : ns * prefiltering (e.g. HP:0.1Hz LP:75Hz)
% ns * 8 ascii : ns * nr of samples in each data record
% ns * 32 ascii : ns * reserved
% DATA RECORD
% nr of samples[1] * integer : first signal in the data record
% nr of samples[2] * integer : second signal
% ..
% ..
% nr of samples[ns] * integer : last signal
if nargin > 3
error('EDFREAD: Too many input arguments.');
end
if ~nargin
error('EDFREAD: Requires at least one input argument (filename to read).');
end
if nargin == 1
assignToVariables = false;
end
[fid,msg] = fopen(fname,'r');
if fid == -1
error(msg)
end
assignToVariables = false; %Default
for ii = 1:2:numel(varargin)
switch lower(varargin{ii})
case 'assigntovariables'
assignToVariables = varargin{ii+1};
end
end
% HEADER
hdr.ver = str2double(char(fread(fid,8)'));
hdr.patientID = fread(fid,80,'*char')';
hdr.recordID = fread(fid,80,'*char')';
hdr.startdate = fread(fid,8,'*char')';% (dd.mm.yy)
% hdr.startdate = datestr(datenum(fread(fid,8,'*char')','dd.mm.yy'), 29); %'yyyy-mm-dd' (ISO 8601)
hdr.starttime = fread(fid,8,'*char')';% (hh.mm.ss)
% hdr.starttime = datestr(datenum(fread(fid,8,'*char')','hh.mm.ss'), 13); %'HH:MM:SS' (ISO 8601)
hdr.bytes = str2double(fread(fid,8,'*char')');
reserved = fread(fid,44);
hdr.records = str2double(fread(fid,8,'*char')');
hdr.duration = str2double(fread(fid,8,'*char')');
% Number of signals
hdr.ns = str2double(fread(fid,4,'*char')');
for ii = 1:hdr.ns
hdr.label{ii} = fread(fid,16,'*char')';
end
for ii = 1:hdr.ns
hdr.transducer{ii} = fread(fid,80,'*char')';
end
% Physical dimension
for ii = 1:hdr.ns
hdr.units{ii} = fread(fid,8,'*char')';
end
% Physical minimum
for ii = 1:hdr.ns
hdr.physicalMin(ii) = str2double(fread(fid,8,'*char')');
end
% Physical maximum
for ii = 1:hdr.ns
hdr.physicalMax(ii) = str2double(fread(fid,8,'*char')');
end
% Digital minimum
for ii = 1:hdr.ns
hdr.digitalMin(ii) = str2double(fread(fid,8,'*char')');
end
% Digital maximum
for ii = 1:hdr.ns
hdr.digitalMax(ii) = str2double(fread(fid,8,'*char')');
end
for ii = 1:hdr.ns
hdr.prefilter{ii} = fread(fid,80,'*char')';
end
for ii = 1:hdr.ns
hdr.samples(ii) = str2double(fread(fid,8,'*char')');
end
for ii = 1:hdr.ns
reserved = fread(fid,32,'*char')';
end
hdr.label = deblank(hdr.label);
hdr.units = deblank(hdr.units);
if nargout > 1 || assignToVariables
% Scale data (linear scaling)
scalefac = (hdr.physicalMax - hdr.physicalMin)./(hdr.digitalMax - hdr.digitalMin);
dc = hdr.physicalMax - scalefac .* hdr.digitalMax;
% RECORD DATA REQUESTED
tmpdata = struct;
for recnum = 1:hdr.records
for ii = 1:hdr.ns
% Use a cell array for DATA because number of samples may vary
% from sample to sample
tmpdata(recnum).data{ii} = fread(fid,hdr.samples(ii),'int16') * scalefac(ii) + dc(ii);
end
end
record = zeros(hdr.ns, hdr.samples(1)*hdr.records);
for ii = 1:numel(hdr.label)
ctr = 1;
for jj = 1:hdr.records
try
record(ii, ctr : ctr + hdr.samples - 1) = tmpdata(jj).data{ii};
end
ctr = ctr + hdr.samples;
end
end
if assignToVariables
for ii = 1:numel(hdr.label)
try
eval(['assignin(''caller'',''',hdr.label{ii},''',record(ii,:))'])
end
end
end
end
fclose(fid);
end
end
end