Skip to content

This is the official PyTorch implementation of “SADC-GAN: A Saliency-aware and Decomposition-consistent Generative Adversarial Network for Multimodal Image Fusion”

License

Notifications You must be signed in to change notification settings

wiz-lee/SADC-GAN

Repository files navigation

SADC-GAN

This is the official PyTorch implementation of “SADC-GAN: A Saliency-aware and Decomposition-consistent Generative Adversarial Network for Multimodal Image Fusion”

Recommended Enviroment

  • PyTorch 1.7.0
  • h5py 2.7.0
  • numpy 1.19.5
  • pillow 8.3.1
  • torchvision 0.8.0

Train

The datasets for training can be download from training_dataset.

For MSRS dataset

Run:

python train_fusion_model.py --dataset_file=./train_datasets/MSRS_vis_inf_64.h5 --checkpoint_path=./trained_models/MSRS --epochs=30 --batch_size=96

For TNO dataset

Run:

python train_fusion_model.py --dataset_file=./train_datasets/TNO_vis_inf_64.h5 --checkpoint_path=./trained_models/TNO --epochs=30 --batch_size=96

For Harvard medical dataset

Run:

python train_fusion_model.py --dataset_file=./train_datasets/Harvard_mri_pet_64.h5 --checkpoint_path=./trained_models/Harvard --epochs=30 --batch_size=96

Test

For MSRS dataset

Run:

python test_fusion_model.py --dataset_path=./test_images/MSRS --hasRGB=Vis --save_path=./fusion_results/MSRS --checkpoint=./checkpoint/MSRS/fusion_model_G_MSRS.pth

For TNO dataset

Run:

python test_fusion_model.py --dataset_path=./test_images/TNO --hasRGB=No --save_path=./fusion_results/TNO --checkpoint=./checkpoint/TNO/fusion_model_G_TNO.pth

For Harvard medical dataset

Run:

python test_fusion_model.py --dataset_path=./test_images/Harvard --hasRGB=Inf --save_path=./fusion_results/Harvard --checkpoint=./checkpoint/Harvard/fusion_model_G_Harvard.pth

If you have any questions, please create an issue.

About

This is the official PyTorch implementation of “SADC-GAN: A Saliency-aware and Decomposition-consistent Generative Adversarial Network for Multimodal Image Fusion”

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages