forked from Significant-Gravitas/Auto-GPT-Benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsend_to_googledrive.py
112 lines (88 loc) · 3.82 KB
/
send_to_googledrive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import base64
import json
import os
import gspread
import pandas as pd
from dotenv import load_dotenv
from oauth2client.service_account import ServiceAccountCredentials
# Load environment variables from .env file
load_dotenv()
# Get the base64 string from the environment variable
base64_creds = os.getenv("GDRIVE_BASE64")
if base64_creds is None:
raise ValueError("The GDRIVE_BASE64 environment variable is not set")
# Decode the base64 string into bytes
creds_bytes = base64.b64decode(base64_creds)
# Convert the bytes into a string
creds_string = creds_bytes.decode("utf-8")
# Parse the string into a JSON object
creds_info = json.loads(creds_string)
# Define the base directory containing JSON files
base_dir = "reports"
# Create a list to store each row of data
rows = []
# Loop over each directory in the base directory
for sub_dir in os.listdir(base_dir):
# Define the subdirectory path
sub_dir_path = os.path.join(base_dir, sub_dir)
# Ensure the sub_dir_path is a directory
if os.path.isdir(sub_dir_path):
# Loop over each file in the subdirectory
for filename in os.listdir(sub_dir_path):
# Check if the file is a JSON file
if filename.endswith(".json"):
# Define the file path
file_path = os.path.join(sub_dir_path, filename)
# Load the JSON data from the file
with open(file_path, "r") as f:
data = json.load(f)
# Loop through each test
for test_name, test_info in data["tests"].items():
# Create a dictionary to hold the information for this row
row = {
"Agent": sub_dir,
"Command": data.get("command", ""),
"Completion Time": data.get("completion_time", ""),
"Total Run Time": data.get("metrics", {}).get("run_time", ""),
"Highest Difficulty": data.get("metrics", {}).get(
"highest_difficulty", ""
),
"Workspace": data.get("config", {}).get("workspace", ""),
"Test Name": test_name,
"Data Path": test_info.get("data_path", ""),
"Is Regression": test_info.get("is_regression", ""),
"Difficulty": test_info.get("metrics", {}).get(
"difficulty", ""
),
"Success": test_info.get("metrics", {}).get("success", ""),
"Success %": test_info.get("metrics", {}).get("success_%", ""),
"Non mock success %": test_info.get("metrics", {}).get(
"non_mock_success_%", ""
),
"Run Time": test_info.get("metrics", {}).get("run_time", ""),
}
# Add this row to the list
rows.append(row)
# Convert the list of rows into a DataFrame
df = pd.DataFrame(rows)
# Define the scope
scope = [
"https://spreadsheets.google.com/feeds",
"https://www.googleapis.com/auth/drive",
]
# Add your service account credentials
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_info, scope)
# Authorize the clientsheet
client = gspread.authorize(creds)
# Get the instance of the Spreadsheet
sheet = client.open("benchmark")
# Get the first sheet of the Spreadsheet
sheet_instance = sheet.get_worksheet(0)
# Convert dataframe to list of lists for uploading to Google Sheets
values = df.values.tolist()
# Prepend the header to the values list
values.insert(0, df.columns.tolist())
# Clear the existing values in the worksheet
sheet_instance.clear()
# Update the worksheet with the new values
sheet_instance.append_rows(values)