Skip to content

vicissitude1999/707proj

 
 

Repository files navigation

Train VAE

python src/train_VAE.py tools/train_vae_cifar10.json

Train VAEBM

Specify the checkpoint argument in train_vaebm_cifar10.json, and then run

python src/train_VAEBM.py tools/train_vaebm_cifar10.json

python -m pytorch_fid /data/10707project/output/groundtruth /data/10707project/output/generated/beta_1/random --device cuda:1 python -m pytorch_fid /data/10707project/output/groundtruth /data/10707project/output/generated/beta_2/mulog_added --device cuda:1 python -m pytorch_fid /data/10707project/output/groundtruth /data/10707project/output/generated/beta_2/mulog_mcmc --device cuda:1

compare fid of randomly generated images between VAE and VAEBM/EBM

python -m pytorch_fid /data/10707project/output/groundtruth /data/10707project/output/vae/celeba64/beta_1/random --device cuda:0

python -m pytorch_fid /data/10707project/output/groundtruth /data/10707project/output/vae/celeba64/beta_1/recon --device cuda:0

random samples VAE VAEBM beta=1 75.571 75.591 beta=2 79.821 73.580 beta=4 88.479 83.063 beta=10 107.176 96.277

reconstructions VAE VAEBM (mulog added) mulog mcmc mulog both mcmc beta=1 50.408 50.790 52.668 43.855 beta=2 60.915 60.978 58.621 53.634 beta=4 74.754 75.061 71.409 61.221 beta=10 98.109 98.484 90.154 85.666

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%