-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtransmix.py
106 lines (96 loc) · 5.17 KB
/
transmix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import torch
import torch.nn as nn
import math
from timm.data.mixup import Mixup, cutmix_bbox_and_lam, one_hot
def mixup_target(target, num_classes, lam=1., smoothing=0.0, device='cuda', return_y1y2=False):
off_value = smoothing / num_classes
on_value = 1. - smoothing + off_value
y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value, device=device)
y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value, device=device)
if return_y1y2:
return y1 * lam + y2 * (1. - lam), y1.clone(), y2.clone()
else:
return y1 * lam + y2 * (1. - lam)
class Mixup_transmix(Mixup):
""" act like Mixup(), but return useful information with method transmix_label()
Mixup/Cutmix that applies different params to each element or whole batch, where per-batch is set as default
Args:
mixup_alpha (float): mixup alpha value, mixup is active if > 0.
cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0.
cutmix_minmax (List[float]): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None.
prob (float): probability of applying mixup or cutmix per batch or element
switch_prob (float): probability of switching to cutmix instead of mixup when both are active
mode (str): how to apply mixup/cutmix params (per 'batch', 'pair' (pair of elements), 'elem' (element)
correct_lam (bool): apply lambda correction when cutmix bbox clipped by image borders
label_smoothing (float): apply label smoothing to the mixed target tensor
num_classes (int): number of classes for target
transmix (bool): enable TransMix or not
"""
def __init__(self, mixup_alpha=1., cutmix_alpha=0., cutmix_minmax=None, prob=1.0, switch_prob=0.5,
mode='batch', correct_lam=True, label_smoothing=0.1, num_classes=1000):
self.mixup_alpha = mixup_alpha
self.cutmix_alpha = cutmix_alpha
self.cutmix_minmax = cutmix_minmax
if self.cutmix_minmax is not None:
assert len(self.cutmix_minmax) == 2
# force cutmix alpha == 1.0 when minmax active to keep logic simple & safe
self.cutmix_alpha = 1.0
self.mix_prob = prob
self.switch_prob = switch_prob
self.label_smoothing = label_smoothing
self.num_classes = num_classes
self.mode = mode
self.correct_lam = correct_lam # correct lambda based on clipped area for cutmix
self.mixup_enabled = True # set to false to disable mixing (intended tp be set by train loop)
def _mix_batch(self, x):
lam, use_cutmix = self._params_per_batch()
if lam == 1.:
return 1.
if use_cutmix:
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
x.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam)
x[:, :, yl:yh, xl:xh] = x.flip(0)[:, :, yl:yh, xl:xh] # cutmix for input!
return lam, (yl, yh, xl, xh) # return box!
else:
x_flipped = x.flip(0).mul_(1. - lam)
x.mul_(lam).add_(x_flipped)
return lam
def transmix_label(self, target, attn, input_shape, ratio=0.5):
"""use the self information?
args:
attn (torch.tensor): attention map from the last Transformer with shape (N, hw)
target (tuple): (target, y1, y2, use_cutmix, box)
target (torch.tensor): mixed target by area-ratio
y1 (torch.tensor): one-hot label for image A (background image) (N, k)
y2 (torch.tensor): one-hot label for image B (cropped patch) (N, k)
use_cutmix (bool): enable cutmix if True, otherwise enable Mixup
box (tuple): (yl, yh, xl, xh)
returns:
target (torch.tensor): with shape (N, K)
"""
# the placeholder _ is the area-based target
(_, y1, y2, box) = target
lam0 = (box[1]-box[0]) * (box[3]-box[2]) / (input_shape[2] * input_shape[3])
mask = torch.zeros((input_shape[2], input_shape[3])).cuda()
mask[box[0]:box[1], box[2]:box[3]] = 1
mask = nn.Upsample(size=int(math.sqrt(attn.shape[1])))(mask.unsqueeze(0).unsqueeze(0)).int()
mask = mask.view(1, -1).repeat(len(attn), 1) # (b, hw)
w1, w2 = torch.sum((1-mask) * attn, dim=1), torch.sum(mask * attn, dim=1)
lam1 = w2 / (w1+w2) # (b, )
lam = (lam0 + lam1) / 2 # ()+(b,) ratio=0.5
target = y1 * (1. - lam).unsqueeze(1) + y2 * lam.unsqueeze(1)
return target
def __call__(self, x, target):
assert len(x) % 2 == 0, 'Batch size should be even when using this'
assert self.mode == 'batch', 'Mixup mode is batch by default'
lam = self._mix_batch(x) # tuple or value
if isinstance(lam, tuple):
lam, box = lam # lam: (b,)
use_cutmix = True
else: # lam is a value
use_cutmix = False
mixed_target, y1, y2 = mixup_target(target, self.num_classes, lam, self.label_smoothing, x.device, return_y1y2=True) # tuple or tensor
if use_cutmix:
return x, (mixed_target, y1, y2, box)
else:
return x, mixed_target