-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathprune.py
223 lines (199 loc) · 9.49 KB
/
prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Validate a trained YOLOv5 model accuracy on a custom dataset
Usage:
$ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
"""
from operator import mod
from models.yolo import *
from utils.torch_utils import select_device, de_parallel
from utils.general import (check_dataset, check_img_size, check_yaml,
colorstr, increment_path, print_args)
from utils.datasets import create_dataloader
from utils.callbacks import Callbacks
from models.common import DetectMultiBackend
import argparse
import os
import sys
from pathlib import Path
import numpy as np
import torch
from utils.prune_utils import get_mask_bn, get_prune_threshold, get_bn_list, get_pruned_yaml, prune_model_load_weight
import val
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
@torch.no_grad()
def prune(data,
weights=None, # model.pt path(s)
cfg='models/yolov5l.yaml',
percent=0,
batch_size=32, # batch size
imgsz=640, # inference size (pixels)
conf_thres=0.001, # confidence threshold
iou_thres=0.6, # NMS IoU threshold
task='val', # train, val, test, speed or study
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
workers=8, # max dataloader workers (per RANK in DDP mode)
single_cls=False, # treat as single-class dataset
augment=False, # augmented inference
verbose=False, # verbose output
save_txt=False, # save results to *.txt
save_hybrid=False, # save label+prediction hybrid results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_json=False, # save a COCO-JSON results file
project=ROOT / 'runs/val', # save to project/name
name='exp', # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=True, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
model=None,
dataloader=None,
save_dir=Path(''),
plots=True,
callbacks=Callbacks(),
compute_loss=None,
val_in_prune=True,
):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
# get model device, PyTorch model
device, pt, jit, engine = next(
model.parameters()).device, True, False, False
half &= device.type != 'cpu' # half precision only supported on CUDA
model.half() if half else model.float()
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(
Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True,
exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn, fuse=False)
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size
data = check_dataset(data) # check
# Configure
model = model.model
model.eval()
# prune model start
model_list, ignore_bn_list = get_bn_list(model)
# replace origin yaml with pruned yaml
pruned_yaml = get_pruned_yaml(cfg, model.model[-1].nc)
# bn weight need to be pruned(masked)
model, mask_bn = get_mask_bn(model, ignore_bn_list, get_prune_threshold(model_list, percent))
pruned_model = Model(cfg=pruned_yaml, ch=3, mask_bn=mask_bn).cuda()
# Compatibility updates
for m in pruned_model.modules():
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
m.inplace = True # pytorch 1.7.0 compatibility
elif type(m) is Conv:
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
pruned_model = prune_model_load_weight(model, pruned_model, mask_bn)
pruned_model.names = model.names
# prune model end
torch.save({'model': deepcopy(de_parallel(pruned_model)).half(), }, save_dir / "pruned_model.pt")
pruned_model.cuda().eval()
is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset
# Dataloader
if not training:
if device.type != 'cpu':
pruned_model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
next(pruned_model.parameters()))) # run once
pad = 0.0 if task == 'speed' else 0.5
task = task if task in ('train', 'val', 'test') else 'val'
dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=pt,
workers=workers, prefix=colorstr(f'{task}: '))[0]
if val_in_prune:
results, _, _ = val.run(data,
batch_size=batch_size,
imgsz=imgsz,
model=pruned_model,
iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65
single_cls=single_cls,
dataloader=dataloader,
save_dir=save_dir,
save_json=is_coco,
verbose=True,
plots=True,
callbacks=callbacks,
compute_loss=compute_loss)
return results
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default=ROOT /
'data/voc.yaml', help='dataset.yaml path')
parser.add_argument('--weights', nargs='+', type=str, default=ROOT /
'runs/train/exp47/weights/last.pt', help='model.pt path(s)')
parser.add_argument('--cfg', type=str,
default='models/yolov5l.yaml', help='model.yaml path')
parser.add_argument('--percent', type=float,
default=0.4, help='prune percentage')
parser.add_argument('--batch-size', type=int,
default=32, help='batch size')
parser.add_argument('--imgsz', '--img', '--img-size',
type=int, default=512, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float,
default=0.001, help='confidence threshold')
parser.add_argument('--iou-thres', type=float,
default=0.6, help='NMS IoU threshold')
parser.add_argument('--task', default='val',
help='train, val, test, speed or study')
parser.add_argument('--device', default='',
help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--workers', type=int, default=8,
help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--single-cls', action='store_true',
help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true',
help='augmented inference')
parser.add_argument('--verbose', action='store_true',
help='report mAP by class')
parser.add_argument('--save-txt', action='store_true',
help='save results to *.txt')
parser.add_argument('--save-hybrid', action='store_true',
help='save label+prediction hybrid results to *.txt')
parser.add_argument('--save-conf', action='store_true',
help='save confidences in --save-txt labels')
parser.add_argument('--save-json', action='store_true',
help='save a COCO-JSON results file')
parser.add_argument('--project', default=ROOT /
'runs/val', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true',
help='existing project/name ok, do not increment')
parser.add_argument('--half', action='store_true',
help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true',
help='use OpenCV DNN for ONNX inference')
parser.add_argument('--val_in_prune', action='store_true')
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
opt.save_json |= opt.data.endswith('coco.yaml')
opt.save_txt |= opt.save_hybrid
print_args(FILE.stem, opt)
return opt
def main():
opt = parse_opt()
params = vars(opt)
params_prune = params.copy()
params.pop('cfg')
params.pop('percent')
if not opt.val_in_prune:
prune(**params_prune)
return
params.pop('val_in_prune')
results_origin, _, _ = val.run(**params)
results_prune = prune(**params_prune)
names = ['P', 'R', 'mAP@.5', 'mAP@.5:.95']
print("=" * 100)
for (name, o, p) in zip(names, results_origin, results_prune):
print('|\t {:<10} | origin:{:<10.4f} | after prune:{:<10.4f} | loss ratio:{:<10.4f}'.format(
name, o, p, (o - p) / o))
print("=" * 100)
if __name__ == "__main__":
main()