-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
344 lines (320 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""
Created on 2022/01/05
@author Sangwoo Han
"""
from typing import Dict, Optional, Union
import click
import numpy as np
from attrdict import AttrDict
from logzero import logger
from optuna import Trial
from main import cli
from pmgt.utils import log_elapsed_time, save_args
# fmt: off
_common_options = [
########################################### Train Options #############################################
click.option("--seed", type=click.INT, default=0, help="Seed for reproducibility"),
click.option("--run-id", type=click.STRING, help="MLFlow Run ID for resume training"),
click.option("--model-name", type=click.STRING, required=True, help="model name"),
click.option("--dataset-name", type=click.STRING, required=True, help="dataset name"),
click.option("--valid-size", default=0.2, help="validation dataset size"),
click.option("--num-epochs", type=click.INT, default=20, help="training epochs"),
click.option('--optim', type=click.Choice(["adamw", "sgd"]), default="adamw", help="optimizer"),
click.option("--lr", type=click.FLOAT, default=1e-3, help="learning rate"),
click.option("--decay", type=click.FLOAT, default=1e-2, help="Weight decay"),
click.option("--no-cuda", is_flag=True, default=False, help="Disable cuda"),
click.option("--mp-enabled", is_flag=True, default=False, help="Enable Mixed Precision"),
click.option("--early", type=click.INT, default=5, help="Early stopping epoch"),
click.option("--early-criterion", type=click.STRING, default="loss", help="Early stopping criterion"),
click.option("--num-workers", type=click.INT, default=8, help="Number of workers for dataloader"),
click.option("--train-batch-size", type=click.INT, default=256, help="train batch size"),
click.option("--test-batch-size", type=click.INT, default=256, help="test batch size"),
click.option("--gradient-max-norm", type=click.FLOAT, help="max norm for gradient clipping"),
click.option("--accumulation-step", type=click.INT, default=1, help="accumlation step for small batch size"),
click.option("--scheduler-warmup", type=click.FloatRange(0, 1), help="Ratio of warmup among total training steps"),
click.option(
"--scheduler-type",
type=click.Choice(
[
"linear",
"cosine",
"cosine_with_restarts",
"polynomial",
"constant",
"constant_with_warmup",
]
),
help="Set type of scheduler",
),
click.option(
"--mode",
type=click.Choice(["train", "eval", "inference"]),
default="train",
help="train: train and eval are executed. eval: eval only, inference: inference only",
),
click.option("--inference-result-path", type=click.Path(), help="inference results path"),
######################################################################################################
########################################### Log Options ##############################################
click.option("--experiment-name", type=click.STRING, default="baseline", help="experiment name"),
click.option("--run-name", type=click.STRING, help="Set Run Name for MLFLow"),
click.option("--tags", type=(str, str), multiple=True, help="set mlflow run tags"),
click.option("--data-dir", type=click.Path(), default="./data", help="data directory"),
click.option("--log-dir", type=click.Path(), default="./logs", help="log directory"),
click.option("--run-script", type=click.Path(exists=True), help="Run script file path to log"),
######################################################################################################
]
# fmt: on
def add_options(options):
def _add_options(func):
for option in reversed(options):
func = option(func)
return func
return _add_options
@cli.command(context_settings={"show_default": True})
@add_options(_common_options)
@click.option(
"--emb-dropout",
type=click.FLOAT,
default=0.0,
help="dropout rate for embedding layer",
)
@click.option("--dropout", type=click.FLOAT, default=0.0, help="dropout rate")
@click.option(
"--layer-norm-eps", type=click.FLOAT, default=1e-12, help="layer norm eps"
)
@click.option("--use-layer-norm", is_flag=True, default=False, help="Use Layer Norm")
@click.option(
"--alpha",
type=click.FLOAT,
default=0.5,
help="trade-off bewteen pretrained GMF and MLP",
)
@click.option(
"--factor-num",
type=click.INT,
default=32,
help="predictive factors numbers in the model",
)
@click.option("--num-layers", type=click.INT, default=3, help="number of layers in MLP")
@click.option(
"--num-ng", type=click.INT, default=1, help="# of negative items for training"
)
@click.option(
"--max-sample-items",
type=click.INT,
default=1000,
help="Maximum # of items/user for testing",
)
@click.option(
"--GMF-run-id",
type=click.STRING,
help="run id for GMF to load weights",
)
@click.option(
"--MLP-run-id",
type=click.STRING,
help="run id for MLP to load weights",
)
@click.option(
"--item-init-emb-path",
type=click.Path(exists=True),
help="item init embedding path from PMGT",
)
@click.option(
"--freeze-item-init-emb",
is_flag=True,
default=False,
help="freeze item init embedding affected only if item-init-emb-path is set",
)
@click.option(
"--normalize-item-init-emb",
is_flag=True,
default=False,
help="normalize item init embedding",
)
@click.pass_context
def train_ncf(ctx: click.core.Context, **args):
"""Train for NCF"""
if ctx.obj["save_args"] is not None:
save_args(args, ctx.obj["save_args"])
return
train_model("ncf", **args)
@cli.command(context_settings={"show_default": True})
@add_options(_common_options)
@click.option(
"--emb-dropout",
type=click.FLOAT,
default=0.0,
help="dropout rate for embedding layer",
)
@click.option(
"--dropout", type=click.FLOAT, default=0.0, help="dropout rate in MLP layer"
)
@click.option(
"--layer-norm-eps", type=click.FLOAT, default=1e-12, help="layer norm eps"
)
@click.option("--use-layer-norm", is_flag=True, default=False, help="Use Layer Norm")
@click.option(
"--factor-num",
type=click.INT,
default=32,
help="predictive factors numbers in the model",
)
@click.option(
"--deep-net-num-layers",
type=click.INT,
default=3,
help="number of DeepNet hidden layers",
)
@click.option(
"--cross-net-num-layers",
type=click.INT,
default=3,
help="number of CrossNet hidden layers",
)
@click.option(
"--num-ng", type=click.INT, default=1, help="# of negative items for training"
)
@click.option(
"--max-sample-items",
type=click.INT,
default=5,
help="Maximum # of items/user for testing",
)
@click.option(
"--item-init-emb-path",
type=click.Path(exists=True),
help="item init embedding path from PMGT",
)
@click.option(
"--freeze-item-init-emb",
is_flag=True,
default=False,
help="freeze item init embedding affected only if item-init-emb-path is set",
)
@click.option(
"--normalize-item-init-emb",
is_flag=True,
default=False,
help="normalize item init embedding",
)
@click.pass_context
def train_dcn(ctx: click.core.Context, **args):
"""Train for DCN"""
if ctx.obj["save_args"] is not None:
save_args(args, ctx.obj["save_args"])
return
train_model("dcn", **args)
@cli.command(context_settings={"show_default": True})
@add_options(_common_options)
@click.option(
"--max-ctx-neigh",
type=click.INT,
default=5,
help="maximum num of contextual neighbors",
)
@click.option(
"--hop-sampling-sizes",
type=click.INT,
multiple=True,
default=[16, 8, 4],
help="# of maximum sampling nodes in each hop",
)
@click.option(
"--max-total-samples",
type=click.INT,
default=10,
help="maximum of total num of postive and negative nodes for each target node",
)
@click.option(
"--min-neg-samples", type=click.INT, default=5, help="minimum num of negative nodes"
)
@click.option(
"--hidden-size",
type=click.INT,
default=128,
help="BERT output hidden size",
)
@click.option(
"--intermediate-size",
type=click.INT,
default=128,
help="BERT intermediate hidden size",
)
@click.option(
"--num-hidden-layers",
type=click.INT,
default=5,
help="BERT num of hidden layers",
)
@click.option(
"--num-attention-heads",
type=click.INT,
default=1,
help="BERT num of attention heads",
)
@click.option(
"--beta",
type=click.FLOAT,
default=0.5,
help="PMGT diversity promoting attention weight",
)
@click.option(
"--random-node-ratio",
type=click.FLOAT,
default=0.2 * 0.1,
help="PMGT random node ratio",
)
@click.option(
"--mask-node-ratio",
type=click.FLOAT,
default=0.2 * 0.8,
help="PMGT mask node ratio",
)
@click.pass_context
def train_pmgt(ctx: click.core.Context, **args):
"""Train for PMGT"""
if ctx.obj["save_args"] is not None:
save_args(args, ctx.obj["save_args"])
return
train_model("pmgt", **args)
@log_elapsed_time
def train_model(
train_name,
is_hptuning: bool = False,
trial: Optional[Trial] = None,
enable_trial_pruning: bool = False,
**args
) -> Union[Dict[str, float], np.ndarray]:
assert train_name in ["ncf", "pmgt", "dcn"]
args = AttrDict(args)
if train_name == "ncf":
import pmgt.ncf.trainer as trainer
elif train_name == "pmgt":
import pmgt.pmgt.trainer as trainer
elif train_name == "dcn":
import pmgt.dcn.trainer as trainer
trainer.check_args(args)
trainer.init_run(args)
trainer.init_dataloader(args)
trainer.init_model(args)
if args.mode == "inference":
logger.info("Inference mode")
return trainer.inference(args)
pl_trainer = None
if args.mode == "train":
_, pl_trainer = trainer.train(
args,
is_hptuning=is_hptuning,
trial=trial,
enable_trial_pruning=enable_trial_pruning,
)
if args.mode == "eval":
logger.info("Eval mode")
try:
return trainer.test(args, pl_trainer, is_hptuning=is_hptuning)
except Exception as e:
if pl_trainer:
pl_logger = pl_trainer.logger
pl_logger.experiment.set_terminated(pl_logger.run_id, status="FAILED")
raise e