-
Notifications
You must be signed in to change notification settings - Fork 0
/
main2.py
1342 lines (1158 loc) · 42 KB
/
main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Created on 2021/07/06
@author Sangwoo Han
"""
import inspect
import multiprocessing
import os
import random
import shutil
import time
import warnings
from collections import deque
from datetime import timedelta
from functools import wraps
from multiprocessing import Process
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import click
import logzero
import networkx as nx
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from logzero import logger
from ruamel.yaml import YAML
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MultiLabelBinarizer, normalize
from torch.cuda.amp import GradScaler
from torch.optim import Optimizer
from torch.utils.data import Subset
from torch.utils.data.dataloader import DataLoader
from tqdm.auto import tqdm
from m2m_text.anns import HNSW
from m2m_text.datasets import AmazonCat13K, EURLex4K, Wiki10, Wiki10_31K
from m2m_text.datasets.custom import IDDataset
from m2m_text.datasets.sbert import SBertDataset, collate_fn
from m2m_text.loss import CircleLoss, CircleLoss2, CircleLoss3
from m2m_text.metrics import (
get_inv_propensity,
get_n_5,
get_p_5,
get_precision_results,
get_psp_5,
get_r_10,
)
from m2m_text.networks import AttentionRNNEncoder, LabelEncoder, SBert
from m2m_text.optimizers import DenseSparseAdamW
from m2m_text.utils.data import get_mlb
from m2m_text.utils.model import load_checkpoint, save_checkpoint
from m2m_text.utils.train import clip_gradient, swa_init, swa_step, swap_swa_params
DATASET_CLS = {
"AmazonCat13K": AmazonCat13K,
"EURLex4K": EURLex4K,
"Wiki10": Wiki10,
"Wiki10_31K": Wiki10_31K,
}
MODEL_CLS = {
"AttentionRNNEncoder": AttentionRNNEncoder,
"SBert": SBert,
}
LE_MODEL_CLS = {
"LabelEncoder": LabelEncoder,
}
TRANSFORMER_MODELS = ["SBert"]
def log_elapsed_time(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
ret = func(*args, **kwargs)
end = time.time()
elapsed = end - start
logger.info(f"elapsed time: {end - start:.2f}s, {timedelta(seconds=elapsed)}")
return ret
return wrapper
def set_logger(log_path: str):
os.makedirs(os.path.dirname(log_path), exist_ok=True)
logzero.logfile(log_path)
def set_seed(seed: int):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def get_model(
model_name: str,
model_cnf: dict,
data_cnf: dict,
mp_enabled: bool,
device: torch.device,
) -> nn.Module:
if model_name in TRANSFORMER_MODELS:
model = MODEL_CLS[model_name](mp_enabled=mp_enabled, **model_cnf["model"]).to(
device
)
else:
model = MODEL_CLS[model_name](
mp_enabled=mp_enabled, **model_cnf["model"], **data_cnf["model"]
).to(device)
return model
def sample_pos_neg(
inputs: Union[np.ndarray, List[int]],
pos_num_samples: int,
neg_num_samples: int,
hard_neg_num_samples: int,
batch_y: torch.Tensor,
ann: HNSW,
ann_candidates: int = 100,
hard_neg_candidates: List[int] = [5, 10, 15],
search_by_id: bool = True,
inv_w: Optional[np.ndarray] = None,
weight_pos_sampling: bool = False,
is_n_pairs: bool = False,
g: Optional[nx.Graph] = None,
) -> Tuple[np.ndarray, np.ndarray]:
for candidates in hard_neg_candidates:
assert (
ann_candidates >= candidates
), "ann_candidates must be greater than or equal to negative_candidates"
positives = []
negatives = []
if g is not None and is_n_pairs:
ann_candidates = int(ann_candidates * 1.5)
neg_num_samples = int(neg_num_samples * 1.5)
hard_neg_num_samples = int(hard_neg_num_samples * 1.5)
_, neigh_indices = ann.kneighbors(inputs, ann_candidates, search_by_id=search_by_id)
for i, y in enumerate(batch_y):
pos = y.nonzero(as_tuple=True)[0].numpy()
p = inv_w[pos] / inv_w[pos].sum() if inv_w is not None else None
if weight_pos_sampling:
sim = (normalize(inputs[i : i + 1]) @ normalize(ann.embeddings[pos]).T)[0]
p = 1 - sim
p /= p.sum()
positives.append(
np.random.choice(
pos,
size=(pos_num_samples,),
replace=len(pos) < pos_num_samples,
p=p,
)
)
hard_neg = []
for candidates in hard_neg_candidates + [ann_candidates]:
if len(hard_neg) >= hard_neg_num_samples:
break
shuffle_idx = np.arange(candidates)
np.random.shuffle(shuffle_idx)
for neigh_label_id in neigh_indices[i][:candidates][shuffle_idx]:
if len(hard_neg) >= hard_neg_num_samples:
break
if (
neigh_label_id != -1
and neigh_label_id not in pos
and neigh_label_id not in hard_neg
):
hard_neg.append(neigh_label_id)
# if not is_n_pairs:
# assert (
# len(hard_neg) == hard_neg_num_samples
# ), "Hint: Increase ann_candidates or check if HNSW returns a lot of -1"
random_label_id = np.arange(batch_y.shape[1])
np.random.shuffle(random_label_id)
neg = []
for label_id in random_label_id:
if len(neg) + len(hard_neg) >= neg_num_samples + hard_neg_num_samples:
break
if label_id not in pos and label_id not in hard_neg:
neg.append(label_id)
assert len(neg) + len(hard_neg) == neg_num_samples + hard_neg_num_samples
negatives.append(
np.concatenate(
[np.array(hard_neg, dtype=np.int64), np.array(neg, dtype=np.int64)]
)
)
return np.stack(positives), np.stack(negatives)
def get_embeddings(
model: nn.Module,
dataloader: DataLoader,
device: torch.device = torch.device("cpu"),
**tqdm_opt,
) -> np.ndarray:
model.eval()
idx = []
embedding = []
for doc_ids, batch_x, _ in tqdm(dataloader, **tqdm_opt):
idx.append(doc_ids.numpy())
with torch.no_grad():
embedding.append(
model(to_device(batch_x, device), mp_enabled=False)[0].cpu().numpy()
)
idx = np.concatenate(idx)
embedding = np.concatenate(embedding)
return embedding[np.argsort(idx)]
def get_label_embeddings(
label_encoder: nn.Module,
batch_size: int = 128,
device: torch.device = torch.device("cpu"),
) -> np.ndarray:
label_embeddings = []
label_encoder.eval()
emb = (
label_encoder.module.emb.emb
if isinstance(label_encoder, nn.DataParallel)
else label_encoder.emb.emb
)
label_ids = torch.arange(emb.num_embeddings)
while label_ids.shape[0] > 0:
with torch.no_grad():
label_embeddings.append(
label_encoder(label_ids[:batch_size].to(device), mp_enabled=False)
.cpu()
.numpy()
)
label_ids = label_ids[batch_size:]
return np.concatenate(label_embeddings)
def build_ann(
embeddings: Optional[np.ndarray] = None,
M: int = 100,
efC: int = 300,
efS: int = 500,
n_candidates: int = 500,
metric: str = "cosine",
n_jobs: int = -1,
filepath: Optional[str] = None,
embedding_filepath: Optional[str] = None,
) -> HNSW:
index = HNSW(
M=M, efC=efC, efS=efS, n_candidates=n_candidates, metric=metric, n_jobs=n_jobs
)
if embeddings is not None:
index.fit(embeddings)
if filepath is not None:
assert embedding_filepath is not None
index.save_index(filepath)
np.save(embedding_filepath, embeddings)
return index
def build_ann_async(
filepath: str,
embedding_filepath: str,
embeddings: np.ndarray,
M: int = 100,
efC: int = 300,
efS: int = 500,
n_candidates: int = 500,
metric: str = "cosine",
n_jobs: int = -1,
) -> Process:
p = Process(
target=build_ann,
args=(
embeddings,
M,
efC,
efS,
n_candidates,
metric,
n_jobs,
filepath,
embedding_filepath,
),
)
p.start()
return p
def load_ann(
index: HNSW,
filepath: str,
embedding_filepath: str,
p: Optional[Process] = None,
) -> bool:
if p is not None:
if p.is_alive():
return False
if p.exitcode != 0:
raise Exception(f"Building process failed. exit code: {p.exitcode}")
index.load_index(filepath)
index.embeddings = np.load(embedding_filepath)
return True
def copy_ann_index(src: str, dst: str) -> None:
shutil.copyfile(src, dst)
shutil.copyfile(src + ".dat", dst + ".dat")
def to_device(
inputs: Union[torch.Tensor, Dict[str, torch.Tensor]],
device: torch.device = torch.device("cpu"),
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
return (
{k: v.to(device) for k, v in inputs.items()}
if type(inputs) == dict
else inputs.to(device)
)
def make_batch(
model: SBert,
batch_ids: torch.Tensor,
batch_x: Dict[str, torch.Tensor],
batch_y: torch.Tensor,
ann_index: HNSW,
ann_candidates: int,
hard_neg_candidates: List[int],
pos_max_num_samples: int,
neg_max_num_samples: int,
hard_neg_max_num_samples: int,
inv_w: Optional[np.ndarray] = None,
weight_pos_sampling: bool = False,
is_n_pairs: bool = False,
shuffle: bool = False,
g: Optional[nx.Graph] = None,
input_embeddings: Optional[np.ndarray] = None,
num_samples: Optional[int] = None,
device: torch.device = torch.device("cpu"),
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor, torch.Tensor]:
def _make_inputs():
anchor_inputs = (
{k: v[anchor[:batch_size]] for k, v in batch_x.items()}
if type(batch_x) == dict
else batch_x[anchor[:batch_size]]
)
positive_labels = torch.from_numpy(positive[:batch_size])
negative_labels = torch.from_numpy(negative[:batch_size])
return anchor_inputs, positive_labels, negative_labels
if g is not None:
assert num_samples is not None and input_embeddings is not None
batch_size = batch_y.shape[0]
model.eval()
with torch.no_grad():
batch_emb = model(to_device(batch_x, device), mp_enabled=False)[0].cpu().numpy()
pos_ids, neg_ids = sample_pos_neg(
batch_emb,
pos_max_num_samples,
neg_max_num_samples,
hard_neg_max_num_samples,
batch_y,
ann_index,
ann_candidates,
hard_neg_candidates,
search_by_id=False,
inv_w=inv_w,
weight_pos_sampling=weight_pos_sampling,
is_n_pairs=is_n_pairs,
g=g,
)
if is_n_pairs:
anchor = np.arange(batch_size)
positive = pos_ids
negative = neg_ids
if g is not None:
dst_ids = []
for i, neg_list in enumerate(negative):
anchor_id = batch_ids[i].cpu().item()
dst_id = []
for neg in neg_list:
path = nx.shortest_path(g, anchor_id, neg.item() + num_samples)
dst_id.append(path[-2])
dst_ids.append(dst_id)
dst_ids = np.array(dst_ids)
sim = (
F.normalize(torch.from_numpy(batch_emb)).unsqueeze(1)
@ F.normalize(
torch.from_numpy(input_embeddings[dst_ids]), dim=-1
).transpose(2, 1)
).squeeze()
negative = np.take_along_axis(negative, sim.argsort().numpy(), 1)[
:, : neg_max_num_samples + hard_neg_max_num_samples
]
else:
anchor = np.array(
[i for i in range(batch_size) for _ in range(pos_max_num_samples)]
)
positive = pos_ids.ravel()
negative = neg_ids.ravel()
assert (
anchor.shape[0] == positive.shape[0]
), f"# of anchor: {anchor.shape[0]}, # of positive: {positive.shape[0]}"
assert (
anchor.shape[0] == negative.shape[0]
), f"# of anchor: {anchor.shape[0]}, # of negative: {negative.shape[0]}"
shuffle_idx = np.arange(anchor.shape[0])
if shuffle:
np.random.shuffle(shuffle_idx)
anchor = anchor[shuffle_idx]
positive = positive[shuffle_idx]
negative = negative[shuffle_idx]
while len(anchor) > 0:
yield _make_inputs()
anchor = anchor[batch_size:]
positive = positive[batch_size:]
negative = negative[batch_size:]
def train_step(
model: nn.Module,
label_encoder: nn.Module,
batch_anchor: Dict[str, torch.Tensor],
batch_positive: torch.Tensor,
batch_negative: torch.Tensor,
criterion: nn.Module,
scaler: Optional[GradScaler] = None,
optim: Optional[Optimizer] = None,
is_train: bool = True,
gradient_clip_value: Optional[float] = None,
gradient_norm_queue: Optional[deque] = None,
inv_w: Optional[torch.Tensor] = None,
):
model.train(is_train)
label_encoder.train(is_train)
mp_enabled = scaler is not None
with torch.set_grad_enabled(is_train):
with torch.cuda.amp.autocast(enabled=mp_enabled):
pos_inv_w = (
inv_w[batch_positive].to(batch_positive.device)
if inv_w is not None
else None
)
anchor_outputs = model(batch_anchor)[0]
positive_outputs = label_encoder(batch_positive)
negative_outputs = label_encoder(batch_negative)
loss = (
criterion(anchor_outputs, positive_outputs, negative_outputs, pos_inv_w)
if len(inspect.signature(criterion.forward).parameters) == 4
else criterion(anchor_outputs, positive_outputs, negative_outputs)
)
if is_train:
optim.zero_grad()
if mp_enabled:
scaler.scale(loss).backward()
scaler.unscale_(optim)
clip_gradient(model, gradient_norm_queue, gradient_clip_value)
scaler.step(optim)
scaler.update()
else:
loss.backward()
clip_gradient(model, gradient_norm_queue, gradient_clip_value)
optim.step()
return loss.item()
def get_results(
model: nn.Module,
dataloader: DataLoader,
raw_y: np.ndarray,
ann_index: HNSW,
mlb: Optional[MultiLabelBinarizer] = None,
inv_w: Optional[np.ndarray] = None,
device: torch.device = torch.device("cpu"),
) -> Dict[str, float]:
if mlb is None:
mlb = MultiLabelBinarizer(sparse_output=True).fit(raw_y)
test_embeddings = get_embeddings(model, dataloader, device, leave=False)
_, test_neigh = ann_index.kneighbors(test_embeddings)
prediction = mlb.classes_[test_neigh]
with warnings.catch_warnings():
warnings.simplefilter("ignore")
p5 = get_p_5(prediction, raw_y, mlb)
n5 = get_n_5(prediction, raw_y, mlb)
r10 = get_r_10(prediction, raw_y, mlb)
results = {
"p5": p5,
"n5": n5,
"r10": r10,
}
if inv_w is not None:
psp5 = get_psp_5(prediction, raw_y, inv_w, mlb)
results["psp5"] = psp5
return results
def copy_file(src: str, dst: str) -> None:
try:
shutil.copyfile(src, dst)
except shutil.SameFileError:
pass
def get_optimizer(
model: nn.Module,
label_encoder: nn.Module,
lr: float,
decay: float,
le_lr: float,
le_decay: float,
) -> Optimizer:
no_decay = ["bias", "LayerNorm.weight"]
param_groups = [
{
"params": [
p
for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": decay,
"lr": lr,
},
{
"params": [
p
for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
"lr": lr,
},
{
"params": [
p
for n, p in label_encoder.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": le_decay,
"lr": le_lr,
},
{
"params": [
p
for n, p in label_encoder.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
"lr": le_lr,
},
]
return DenseSparseAdamW(param_groups)
@click.command(context_settings={"show_default": True})
@click.option(
"--mode",
type=click.Choice(["train", "eval"]),
default="train",
help="train: train and eval are executed. eval: eval only",
)
@click.option("--test-run", is_flag=True, default=False, help="Test run mode for debug")
@click.option(
"--run-script", type=click.Path(exists=True), help="Run script file path to log"
)
@click.option("--seed", type=click.INT, default=0, help="Seed for reproducibility")
@click.option(
"--model-cnf", type=click.Path(exists=True), help="Model config file path"
)
@click.option(
"--le-model-cnf", type=click.Path(exists=True), help="Label Model config file path"
)
@click.option("--data-cnf", type=click.Path(exists=True), help="Data config file path")
@click.option(
"--ckpt-root-path",
type=click.Path(),
default="./checkpoint",
help="Checkpoint root path",
)
@click.option("--ckpt-name", type=click.STRING, help="Checkpoint name")
@click.option(
"--mp-enabled", is_flag=True, default=False, help="Enable Mixed Precision"
)
@click.option(
"--swa-warmup", type=click.INT, default=10, help="Warmup for SWA. Disable: -1"
)
@click.option(
"--eval-step",
type=click.INT,
default=100,
help="Evaluation step during training",
)
@click.option("--print-step", type=click.INT, default=20, help="Print step")
@click.option(
"--early",
type=click.INT,
default=50,
help="Early stopping step",
)
@click.option(
"--early-criterion",
type=click.Choice(["p5", "n5", "psp5"]),
default="n5",
help="Early stopping criterion",
)
@click.option(
"--num-epochs", type=click.INT, default=200, help="Total number of epochs"
)
@click.option(
"--train-batch-size", type=click.INT, default=128, help="Batch size for training"
)
@click.option(
"--test-batch-size", type=click.INT, default=256, help="Batch size for test"
)
@click.option("--no-cuda", is_flag=True, default=False, help="Disable cuda")
@click.option(
"--num-workers", type=click.INT, default=4, help="Number of workers for data loader"
)
@click.option("--decay", type=click.FLOAT, default=1e-2, help="Weight decay")
@click.option("--lr", type=click.FLOAT, default=1e-5, help="learning rate")
@click.option(
"--le-decay", type=click.FLOAT, default=1e-2, help="Weight decay for label encoder"
)
@click.option(
"--le-lr", type=click.FLOAT, default=1e-3, help="learning rate for label encoder"
)
@click.option(
"--ann-candidates", type=click.INT, default=30, help="# of ANN candidates"
)
@click.option(
"--hard-neg-candidates",
multiple=True,
type=click.INT,
default=[5, 10, 15],
help="# of hard neg candidates",
)
@click.option(
"--freeze-model", is_flag=True, default=False, help="Freeze model parameters"
)
@click.option("--resume", is_flag=True, default=False, help="Resume training")
@click.option(
"--pos-num-samples", type=click.INT, default=5, help="# of positive samples"
)
@click.option(
"--neg-num-samples", type=click.INT, default=2, help="# of negative samples"
)
@click.option(
"--hard-neg-num-samples",
type=click.INT,
default=3,
help="# of hard negative samples",
)
@click.option(
"--loss-name",
type=click.Choice(["circle", "circle2", "circle3"]),
default="circle",
help="Loss function",
)
@click.option(
"--weight-pos-sampling",
is_flag=True,
default=False,
help="Enable weighted postive sampling",
)
@click.option(
"--gradient-max-norm",
type=click.FLOAT,
help="max norm for gradient clipping",
)
@click.option("--m", type=click.FLOAT, default=0.15, help="Margin of Circle loss")
@click.option(
"--gamma", type=click.FLOAT, default=1.0, help="Scale factor of Circle loss"
)
@click.option(
"--loss-pos-weights",
is_flag=True,
default=False,
help="Enable pos weights based on inv_w",
)
@click.option(
"--normalize-loss-pos-weights",
is_flag=True,
default=False,
help="normalize loss pos weights",
)
@click.option(
"--loss-pos-weights-warmup",
type=click.INT,
default=10,
help="loss pos weights warmup",
)
@click.option(
"--metric",
type=click.Choice(["cosine", "euclidean"]),
default="cosine",
help="metric function to be used",
)
@click.option("--use-graph", is_flag=True, default=False, help="Use graph for sampling")
@log_elapsed_time
def main(
mode: str,
test_run: bool,
run_script: str,
seed: int,
model_cnf: str,
le_model_cnf: str,
data_cnf: str,
ckpt_root_path: str,
ckpt_name: str,
mp_enabled: bool,
swa_warmup: int,
eval_step: int,
print_step: int,
early: int,
early_criterion: str,
num_epochs: int,
train_batch_size: int,
test_batch_size: int,
no_cuda: bool,
num_workers: int,
decay: float,
lr: float,
le_decay: float,
le_lr: float,
ann_candidates: int,
hard_neg_candidates: List[int],
freeze_model: bool,
resume: bool,
pos_num_samples: int,
neg_num_samples: int,
hard_neg_num_samples: int,
loss_name: str,
weight_pos_sampling: bool,
gradient_max_norm: float,
m: float,
gamma: float,
loss_pos_weights: bool,
loss_pos_weights_warmup: int,
normalize_loss_pos_weights: bool,
metric: str,
use_graph: bool,
):
if loss_name != "circle3":
assert metric == "cosine"
yaml = YAML(typ="safe")
model_cnf_path = model_cnf
le_model_cnf_path = le_model_cnf
data_cnf_path = data_cnf
model_cnf = yaml.load(Path(model_cnf))
le_model_cnf = yaml.load(Path(le_model_cnf))
data_cnf = yaml.load(Path(data_cnf))
model_name = model_cnf["name"]
le_model_name = le_model_cnf["name"]
dataset_name = data_cnf["name"]
prefix = "" if ckpt_name is None else f"{ckpt_name}_"
ckpt_name = f"{prefix}{model_name}_{dataset_name}_{seed}.pt"
ckpt_root_path = os.path.join(ckpt_root_path, os.path.splitext(ckpt_name)[0])
ckpt_path = os.path.join(ckpt_root_path, ckpt_name)
last_ckpt_path = os.path.splitext(ckpt_path)
last_ckpt_path = last_ckpt_path[0] + ".last" + last_ckpt_path[1]
log_filename = os.path.splitext(ckpt_name)[0] + ".log"
ann_index_filepath = os.path.join(ckpt_root_path, "ann_index")
best_ann_index_filepath = os.path.join(ckpt_root_path, "best_ann_index")
label_embedding_filepath = os.path.join(ckpt_root_path, "label_embeddings.npy")
best_label_embedding_filepath = os.path.join(
ckpt_root_path, "best_label_embeddings.npy"
)
os.makedirs(ckpt_root_path, exist_ok=True)
if not resume and os.path.exists(ckpt_path) and mode == "train":
click.confirm(
"Checkpoint is already existed. Overwrite it?", abort=True, err=True
)
if not test_run:
logfile_path = os.path.join(ckpt_root_path, log_filename)
if os.path.exists(logfile_path) and not resume and mode == "train":
os.remove(logfile_path)
set_logger(os.path.join(ckpt_root_path, log_filename))
copy_file(
model_cnf_path,
os.path.join(ckpt_root_path, os.path.basename(model_cnf_path)),
)
copy_file(
le_model_cnf_path,
os.path.join(ckpt_root_path, os.path.basename(le_model_cnf_path)),
)
copy_file(
data_cnf_path, os.path.join(ckpt_root_path, os.path.basename(data_cnf_path))
)
if run_script is not None:
copy_file(
run_script, os.path.join(ckpt_root_path, os.path.basename(run_script))
)
if seed is not None:
logger.info(f"seed: {seed}")
set_seed(seed)
device = torch.device("cpu" if no_cuda else "cuda")
num_gpus = torch.cuda.device_count()
################################ Prepare Dataset #################################
logger.info(f"Dataset: {dataset_name}")
with warnings.catch_warnings():
warnings.simplefilter("ignore")
train_dataset = DATASET_CLS[dataset_name](
**data_cnf["dataset"], **model_cnf.get("dataset", {})
)
test_dataset = DATASET_CLS[dataset_name](
train=False, **data_cnf["dataset"], **model_cnf.get("dataset", {})
)
inv_w = get_inv_propensity(train_dataset.y)
inv_w_tensor = torch.from_numpy(inv_w)
if normalize_loss_pos_weights:
inv_w_tensor = inv_w_tensor / inv_w_tensor.max()
# inv_w_tensor = (inv_w_tensor - inv_w_tensor.min()) / (
# inv_w_tensor.max() - inv_w_tensor.min()
# )
mlb = get_mlb(train_dataset.le_path)
num_labels = train_dataset.y.shape[1]
dataset_path = os.path.dirname(train_dataset.tokenized_path)
train_tokenized_texts = np.load(
os.path.join(dataset_path, "train_raw.npz"), allow_pickle=True
)["texts"]
test_tokenized_texts = np.load(
os.path.join(dataset_path, "test_raw.npz"), allow_pickle=True
)["texts"]
train_ids = np.arange(len(train_dataset))
train_ids, valid_ids = train_test_split(
train_ids, test_size=data_cnf.get("valid_size", 200)
)
train_mask = np.zeros(len(train_dataset), dtype=np.bool)
train_mask[train_ids] = True
train_mask = torch.from_numpy(train_mask)
logger.info(
f"# of train dataset: {train_mask.nonzero(as_tuple=True)[0].shape[0]:,}"
)
logger.info(
f"# of valid dataset: {(~train_mask).nonzero(as_tuple=True)[0].shape[0]:,}"
)
logger.info(f"# of test dataset: {len(test_dataset):,}")
logger.info(f"# of labels: {num_labels:,}")
if use_graph:
src, dst = train_dataset.y.nonzero()
dst += len(train_dataset)
g = nx.Graph()
g.add_edges_from(zip(src, dst))
else:
g = None
##################################################################################
################################# Prepare Model ##################################
logger.info(f"Model: {model_name}")
logger.info(f"Label Model: {le_model_name}")
model = get_model(model_name, model_cnf, data_cnf, mp_enabled, device)
label_encoder = LE_MODEL_CLS[le_model_name](
num_labels=num_labels, mp_enabled=mp_enabled, **le_model_cnf["model"]
).to(device)
if num_gpus > 1 and not no_cuda:
logger.info(f"Multi-GPU mode: {num_gpus} GPUs")
model = nn.DataParallel(model)
label_encoder = nn.DataParallel(label_encoder)
elif not no_cuda:
logger.info("Single-GPU mode")
else:
logger.info("CPU mode")
##################################################################################
############################### Prepare Dataloader ###############################
logger.info(f"Preparing dataloader for {model_name}")
if model_name in TRANSFORMER_MODELS:
tokenizer = (
model.module.tokenize
if isinstance(model, nn.DataParallel)
else model.tokenize
)
train_sbert_dataset = SBertDataset(
tokenizer(train_tokenized_texts[train_mask]),
train_dataset.y[train_mask],
)
valid_sbert_dataset = SBertDataset(
tokenizer(train_tokenized_texts[~train_mask]),
train_dataset.y[~train_mask],
)
test_sbert_dataset = SBertDataset(
tokenizer(test_tokenized_texts),
test_dataset.y,
)
train_dataloader = DataLoader(
train_sbert_dataset,
batch_size=train_batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=False if no_cuda else True,
)
valid_dataloader = DataLoader(
valid_sbert_dataset,
batch_size=test_batch_size,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=False if no_cuda else True,
)
test_dataloader = DataLoader(
test_sbert_dataset,
batch_size=test_batch_size,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=False if no_cuda else True,
)
else:
id_dataset = IDDataset(train_dataset)
train_dataloader = DataLoader(