Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add invert functionality to mat3 (3x3) matrices #32

Merged
merged 1 commit into from
Mar 5, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions float64/mat2/mat2.go
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,7 @@ func (mat *T) Size() int {
}

// Slice returns the elements of the matrix as slice.
// The data may be a copy depending on the platform implementation.
func (mat *T) Slice() []float64 {
return mat.Array()[:]
}
Expand Down Expand Up @@ -138,6 +139,10 @@ func (mat *T) TransformVec2(v *vec2.T) {
v[0] = x
}

func (mat *T) Determinant() float64 {
return mat[0][0]*mat[1][1] - mat[1][0]*mat[0][1]
}

// Transpose transposes the matrix.
func (mat *T) Transpose() *T {
temp := mat[0][1]
Expand Down
107 changes: 97 additions & 10 deletions float64/mat3/mat3.go
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
package mat3

import (
"errors"
"fmt"
"math"

Expand All @@ -14,7 +15,11 @@ import (

var (
// Zero holds a zero matrix.
Zero = T{}
Zero = T{
vec3.T{0, 0, 0},
vec3.T{0, 0, 0},
vec3.T{0, 0, 0},
}

// Ident holds an ident matrix.
Ident = T{
Expand Down Expand Up @@ -174,12 +179,29 @@ func (mat *T) AssignMat2x2(m *mat2.T) *T {
return mat
}

// MulVec3 multiplies v with T.
// Mul multiplies every element by f and returns mat.
func (mat *T) Mul(f float64) *T {
for i, col := range mat {
for j := range col {
mat[i][j] *= f
}
}
return mat
}

// Muled returns a copy of the matrix with every element multiplied by f.
func (mat *T) Muled(f float64) T {
result := *mat
result.Mul(f)
return result
}

// MulVec3 multiplies v with mat and returns a new vector v' = M * v.
func (mat *T) MulVec3(v *vec3.T) vec3.T {
return vec3.T{
mat[0][0]*v[0] + mat[1][0]*v[1] + mat[2][0]*v[2],
mat[0][1]*v[1] + mat[1][1]*v[1] + mat[2][1]*v[2],
mat[0][2]*v[2] + mat[1][2]*v[1] + mat[2][2]*v[2],
mat[0][1]*v[0] + mat[1][1]*v[1] + mat[2][1]*v[2],
mat[0][2]*v[0] + mat[1][2]*v[1] + mat[2][2]*v[2],
}
}

Expand Down Expand Up @@ -354,12 +376,15 @@ func (mat *T) ExtractEulerAngles() (yHead, xPitch, zRoll float64) {

// Determinant returns the determinant of the matrix.
func (mat *T) Determinant() float64 {
return mat[0][0]*mat[1][1]*mat[2][2] +
mat[1][0]*mat[2][1]*mat[0][2] +
mat[2][0]*mat[0][1]*mat[1][2] -
mat[2][0]*mat[1][1]*mat[0][2] -
mat[1][0]*mat[0][1]*mat[2][2] -
mat[0][0]*mat[2][1]*mat[1][2]
// | a b c |
// | d e f | = det A
// | g h i |
return mat[0][0]*mat[1][1]*mat[2][2] + // aei
mat[1][0]*mat[2][1]*mat[0][2] + // dhc
mat[2][0]*mat[0][1]*mat[1][2] - // gbf
mat[2][0]*mat[1][1]*mat[0][2] - // gec
mat[1][0]*mat[0][1]*mat[2][2] - // dbi
mat[0][0]*mat[2][1]*mat[1][2] // ahf
}

// IsReflective returns true if the matrix can be reflected by a plane.
Expand All @@ -380,3 +405,65 @@ func (mat *T) Transpose() *T {
swap(&mat[2][1], &mat[1][2])
return mat
}

// Adjugate computes the adjugate of this matrix and returns mat
func (mat *T) Adjugate() *T {
matOrig := *mat
for i := 0; i < 3; i++ {
for j := 0; j < 3; j++ {
// -1 for odd i+j, 1 for even i+j
sign := float64(((i+j)%2)*-2 + 1)
mat[i][j] = matOrig.maskedBlock(i, j).Determinant() * sign
}
}
return mat.Transpose()
}

// Adjugated returns an adjugated copy of the matrix.
func (mat *T) Adjugated() T {
result := *mat
result.Adjugate()
return result
}

// returns a 3x3 matrix without the i-th column and j-th row
func (mat *T) maskedBlock(blockI, blockJ int) *mat2.T {
var m mat2.T
m_i := 0
for i := 0; i < 3; i++ {
if i == blockI {
continue
}
m_j := 0
for j := 0; j < 3; j++ {
if j == blockJ {
continue
}
m[m_i][m_j] = mat[i][j]
m_j++
}
m_i++
}
return &m
}

// Invert inverts the given matrix. Destructive operation.
// Does not check if matrix is singular and may lead to strange results!
func (mat *T) Invert() (*T, error) {
initialDet := mat.Determinant()
if initialDet == 0 {
return &Zero, errors.New("can not create inverted matrix as determinant is 0")
}

mat.Adjugate()
mat.Scale(1 / initialDet)
return mat, nil
}

// Inverted inverts a copy of the given matrix.
// Does not check if matrix is singular and may lead to strange results!
func (mat *T) Inverted() (T, error) {
result := *mat
_, err := result.Invert()
return result, err
}
150 changes: 150 additions & 0 deletions float64/mat3/mat3_test.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
package mat3

import (
"math"
"testing"

"github.com/ungerik/go3d/float64/mat2"
"github.com/ungerik/go3d/float64/vec2"
"github.com/ungerik/go3d/float64/vec3"
)

const EPSILON = 0.0001

// Some matrices used in multiple tests.
var (
invertableMatrix1 = T{vec3.T{4, -2, 3}, vec3.T{8, -3, 5}, vec3.T{7, -2, 4}}
invertedMatrix1 = T{vec3.T{-2, 2, -1}, vec3.T{3, -5, 4}, vec3.T{5, -6, 4}}
nonInvertableMatrix1 = T{vec3.T{1, 1, 1}, vec3.T{1, 1, 1}, vec3.T{1, 1, 1}}
nonInvertableMatrix2 = T{vec3.T{1, 1, 1}, vec3.T{1, 0, 1}, vec3.T{1, 1, 1}}

testMatrix1 = T{
vec3.T{0.38016528, -0.0661157, -0.008264462},
vec3.T{-0.19834709, 0.33884296, -0.08264463},
vec3.T{0.11570247, -0.28099173, 0.21487603},
}

testMatrix2 = T{
vec3.T{23, -4, -0.5},
vec3.T{-12, 20.5, -5},
vec3.T{7, -17, 13},
}

row123Changed, _ = Parse("3 1 0.5 2 5 2 1 6 7")
)

func TestDeterminant_2(t *testing.T) {
detTwo := Ident
detTwo[0][0] = 2
if det := detTwo.Determinant(); det != 2 {
t.Errorf("Wrong determinant: %f", det)
}
}

func TestDeterminant_3(t *testing.T) {
scale2 := Ident.Scaled(2)
if det := scale2.Determinant(); det != 2*2*2*1 {
t.Errorf("Wrong determinant: %f", det)
}
}

func TestDeterminant_4(t *testing.T) {
row1changed, _ := Parse("3 0 0 2 2 0 1 0 2")
if det := row1changed.Determinant(); det != 12 {
t.Errorf("Wrong determinant: %f", det)
}
}

func TestDeterminant_5(t *testing.T) {
row12changed, _ := Parse("3 1 0 2 5 0 1 6 2")
if det := row12changed.Determinant(); det != 26 {
t.Errorf("Wrong determinant: %f", det)
}
}

func TestDeterminant_7(t *testing.T) {
randomMatrix, err := Parse("0.43685 0.81673 0.63721 0.16600 0.40608 0.53479 0.37328 0.36436 0.56356")
randomMatrix.Transpose()
if err != nil {
t.Errorf("Could not parse random matrix: %v", err)
}
if det := randomMatrix.Determinant(); practicallyEqual(det, 0.043437) {
t.Errorf("Wrong determinant for random sub 3x3 matrix: %f", det)
}
}

func practicallyEqual(value1 float64, value2 float64) bool {
return math.Abs(value1-value2) > EPSILON
}

func TestDeterminant_6(t *testing.T) {
row123changed := row123Changed
if det := row123changed.Determinant(); det != 60.500 {
t.Errorf("Wrong determinant for 3x3 matrix: %f", det)
}
}

func TestDeterminant_1(t *testing.T) {
detId := Ident.Determinant()
if detId != 1 {
t.Errorf("Wrong determinant for identity matrix: %f", detId)
}
}

func TestMaskedBlock(t *testing.T) {
m := row123Changed
blockedExpected := mat2.T{vec2.T{5, 2}, vec2.T{6, 7}}
if blocked := m.maskedBlock(0, 0); *blocked != blockedExpected {
t.Errorf("Did not block 0,0 correctly: %#v", blocked)
}
}

func TestAdjugate(t *testing.T) {
adj := row123Changed
adj.Adjugate()
// Computed in octave:
adjExpected := T{vec3.T{23, -4, -0.5}, vec3.T{-12, 20.5, -5}, vec3.T{7, -17, 13}}
if adj != adjExpected {
t.Errorf("Adjugate not computed correctly: %#v", adj)
}
}

func TestInvert_ok(t *testing.T) {
inv := invertableMatrix1
_, err := inv.Invert()

if err != nil {
t.Error("Inverse not computed correctly", err)
}

invExpected := invertedMatrix1
if inv != invExpected {
t.Errorf("Inverse not computed correctly: %#v", inv)
}
}

func TestInvert_nok_1(t *testing.T) {
inv := nonInvertableMatrix1
_, err := inv.Inverted()
if err == nil {
t.Error("Inverse should not be possible", err)
}
}

func TestInvert_nok_2(t *testing.T) {
inv := nonInvertableMatrix2
_, err := inv.Inverted()
if err == nil {
t.Error("Inverse should not be possible", err)
}
}

func BenchmarkAssignMul(b *testing.B) {
m1 := testMatrix1
m2 := testMatrix2
var mMult T
b.ResetTimer()
for i := 0; i < b.N; i++ {
mMult.AssignMul(&m1, &m2)
}
}
10 changes: 7 additions & 3 deletions mat2/mat2.go
Original file line number Diff line number Diff line change
Expand Up @@ -124,10 +124,10 @@ func (mat *T) AssignMul(a, b *T) *T {
}

// MulVec2 multiplies vec with mat.
func (mat *T) MulVec2(v *vec2.T) vec2.T {
func (mat *T) MulVec2(vec *vec2.T) vec2.T {
return vec2.T{
mat[0][0]*v[0] + mat[1][0]*v[1],
mat[0][1]*v[1] + mat[1][1]*v[1],
mat[0][0]*vec[0] + mat[1][0]*vec[1],
mat[0][1]*vec[1] + mat[1][1]*vec[1],
}
}

Expand All @@ -139,6 +139,10 @@ func (mat *T) TransformVec2(v *vec2.T) {
v[0] = x
}

func (mat *T) Determinant() float32 {
return mat[0][0]*mat[1][1] - mat[1][0]*mat[0][1]
}

// Transpose transposes the matrix.
func (mat *T) Transpose() *T {
temp := mat[0][1]
Expand Down
Loading