forked from pingswept/pysolar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
solar.py
359 lines (295 loc) · 17.5 KB
/
solar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#!/usr/bin/python
# Copyright 2007-2010 Brandon Stafford
#
# This file is part of Pysolar.
#
# Pysolar is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Pysolar is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with Pysolar. If not, see <http://www.gnu.org/licenses/>.
"""Solar geometry functions
This module contains the most important functions for calculation of the position of the sun.
"""
import math
import datetime
import constants
import julian
import radiation
#if __name__ == "__main__":
def SolarTest():
latitude_deg = 42.364908
longitude_deg = -71.112828
d = datetime.datetime.utcnow()
thirty_minutes = datetime.timedelta(hours = 0.5)
for i in range(48):
timestamp = d.ctime()
altitude_deg = GetAltitude(latitude_deg, longitude_deg, d)
azimuth_deg = GetAzimuth(latitude_deg, longitude_deg, d)
power = radiation.GetRadiationDirect(d, altitude_deg)
if (altitude_deg > 0):
print timestamp, "UTC", altitude_deg, azimuth_deg, power
d = d + thirty_minutes
def EquationOfTime(day):
b = (2 * math.pi / 364.0) * (day - 81)
return (9.87 * math.sin(2 *b)) - (7.53 * math.cos(b)) - (1.5 * math.sin(b))
def GetAberrationCorrection(radius_vector): # r is earth radius vector [astronomical units]
return -20.4898/(3600.0 * radius_vector)
def GetAltitude(latitude_deg, longitude_deg, utc_datetime, elevation = 0, temperature_celsius = 25, pressure_millibars = 1013.25):
'''See also the faster, but less accurate, GetAltitudeFast()'''
# location-dependent calculations
projected_radial_distance = GetProjectedRadialDistance(elevation, latitude_deg)
projected_axial_distance = GetProjectedAxialDistance(elevation, latitude_deg)
# time-dependent calculations
jd = julian.GetJulianDay(utc_datetime)
jde = julian.GetJulianEphemerisDay(jd, 65)
jce = julian.GetJulianEphemerisCentury(jde)
jme = julian.GetJulianEphemerisMillenium(jce)
geocentric_latitude = GetGeocentricLatitude(jme)
geocentric_longitude = GetGeocentricLongitude(jme)
radius_vector = GetRadiusVector(jme)
aberration_correction = GetAberrationCorrection(radius_vector)
equatorial_horizontal_parallax = GetEquatorialHorizontalParallax(radius_vector)
nutation = GetNutation(jde)
apparent_sidereal_time = GetApparentSiderealTime(jd, jme, nutation)
true_ecliptic_obliquity = GetTrueEclipticObliquity(jme, nutation)
# calculations dependent on location and time
apparent_sun_longitude = GetApparentSunLongitude(geocentric_longitude, nutation, aberration_correction)
geocentric_sun_right_ascension = GetGeocentricSunRightAscension(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
geocentric_sun_declination = GetGeocentricSunDeclination(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
local_hour_angle = GetLocalHourAngle(apparent_sidereal_time, longitude_deg, geocentric_sun_right_ascension)
parallax_sun_right_ascension = GetParallaxSunRightAscension(projected_radial_distance, equatorial_horizontal_parallax, local_hour_angle, geocentric_sun_declination)
topocentric_local_hour_angle = GetTopocentricLocalHourAngle(local_hour_angle, parallax_sun_right_ascension)
topocentric_sun_declination = GetTopocentricSunDeclination(geocentric_sun_declination, projected_axial_distance, equatorial_horizontal_parallax, parallax_sun_right_ascension, local_hour_angle)
topocentric_elevation_angle = GetTopocentricElevationAngle(latitude_deg, topocentric_sun_declination, topocentric_local_hour_angle)
refraction_correction = GetRefractionCorrection(pressure_millibars, temperature_celsius, topocentric_elevation_angle)
return topocentric_elevation_angle + refraction_correction
def GetAltitudeFast(latitude_deg, longitude_deg, utc_datetime):
# expect 19 degrees for solar.GetAltitude(42.364908,-71.112828,datetime.datetime(2007, 2, 18, 20, 13, 1, 130320))
day = GetDayOfYear(utc_datetime)
declination_rad = math.radians(GetDeclination(day))
latitude_rad = math.radians(latitude_deg)
hour_angle = GetHourAngle(utc_datetime, longitude_deg)
first_term = math.cos(latitude_rad) * math.cos(declination_rad) * math.cos(math.radians(hour_angle))
second_term = math.sin(latitude_rad) * math.sin(declination_rad)
return math.degrees(math.asin(first_term + second_term))
def GetApparentSiderealTime(julian_day, jme, nutation):
return GetMeanSiderealTime(julian_day) + nutation['longitude'] * math.cos(GetTrueEclipticObliquity(jme, nutation))
def GetApparentSunLongitude(geocentric_longitude, nutation, ab_correction):
return geocentric_longitude + nutation['longitude'] + ab_correction
def GetAzimuth(latitude_deg, longitude_deg, utc_datetime, elevation = 0):
# location-dependent calculations
projected_radial_distance = GetProjectedRadialDistance(elevation, latitude_deg)
projected_axial_distance = GetProjectedAxialDistance(elevation, latitude_deg)
# time-dependent calculations
jd = julian.GetJulianDay(utc_datetime)
jde = julian.GetJulianEphemerisDay(jd, 65)
jce = julian.GetJulianEphemerisCentury(jde)
jme = julian.GetJulianEphemerisMillenium(jce)
geocentric_latitude = GetGeocentricLatitude(jme)
geocentric_longitude = GetGeocentricLongitude(jme)
radius_vector = GetRadiusVector(jme)
aberration_correction = GetAberrationCorrection(radius_vector)
equatorial_horizontal_parallax = GetEquatorialHorizontalParallax(radius_vector)
nutation = GetNutation(jde)
apparent_sidereal_time = GetApparentSiderealTime(jd, jme, nutation)
true_ecliptic_obliquity = GetTrueEclipticObliquity(jme, nutation)
# calculations dependent on location and time
apparent_sun_longitude = GetApparentSunLongitude(geocentric_longitude, nutation, aberration_correction)
geocentric_sun_right_ascension = GetGeocentricSunRightAscension(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
geocentric_sun_declination = GetGeocentricSunDeclination(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
local_hour_angle = GetLocalHourAngle(apparent_sidereal_time, longitude_deg, geocentric_sun_right_ascension)
parallax_sun_right_ascension = GetParallaxSunRightAscension(projected_radial_distance, equatorial_horizontal_parallax, local_hour_angle, geocentric_sun_declination)
topocentric_local_hour_angle = GetTopocentricLocalHourAngle(local_hour_angle, parallax_sun_right_ascension)
topocentric_sun_declination = GetTopocentricSunDeclination(geocentric_sun_declination, projected_axial_distance, equatorial_horizontal_parallax, parallax_sun_right_ascension, local_hour_angle)
return 180 - GetTopocentricAzimuthAngle(topocentric_local_hour_angle, latitude_deg, topocentric_sun_declination)
def GetAzimuthFast(latitude_deg, longitude_deg, utc_datetime):
# expect -50 degrees for solar.GetAzimuth(42.364908,-71.112828,datetime.datetime(2007, 2, 18, 20, 18, 0, 0))
day = GetDayOfYear(utc_datetime)
declination_rad = math.radians(GetDeclination(day))
latitude_rad = math.radians(latitude_deg)
hour_angle_rad = math.radians(GetHourAngle(utc_datetime, longitude_deg))
altitude_rad = math.radians(GetAltitude(latitude_deg, longitude_deg, utc_datetime))
azimuth_rad = math.asin(math.cos(declination_rad) * math.sin(hour_angle_rad) / math.cos(altitude_rad))
if(math.cos(hour_angle_rad) >= (math.tan(declination_rad) / math.tan(latitude_rad))):
return math.degrees(azimuth_rad)
else:
return (180 - math.degrees(azimuth_rad))
def GetCoefficient(jme, constant_array):
return sum([constant_array[i-1][0] * math.cos(constant_array[i-1][1] + (constant_array[i-1][2] * jme)) for i in range(len(constant_array))])
def GetDayOfYear(utc_datetime):
year_start = datetime.datetime(utc_datetime.year, 1, 1, tzinfo=utc_datetime.tzinfo)
delta = (utc_datetime - year_start)
return delta.days
def GetDeclination(day):
'''The declination of the sun is the angle between
Earth's equatorial plane and a line between the Earth and the sun.
The declination of the sun varies between 23.45 degrees and -23.45 degrees,
hitting zero on the equinoxes and peaking on the solstices.
'''
return 23.45 * math.sin((2 * math.pi / 365.0) * (day - 81))
def GetEquatorialHorizontalParallax(radius_vector):
return 8.794 / (3600 / radius_vector)
def GetFlattenedLatitude(latitude):
latitude_rad = math.radians(latitude)
return math.degrees(math.atan(0.99664719 * math.tan(latitude_rad)))
# Geocentric functions calculate angles relative to the center of the earth.
def GetGeocentricLatitude(jme):
return -1 * GetHeliocentricLatitude(jme)
def GetGeocentricLongitude(jme):
return (GetHeliocentricLongitude(jme) + 180) % 360
def GetGeocentricSunDeclination(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude):
apparent_sun_longitude_rad = math.radians(apparent_sun_longitude)
true_ecliptic_obliquity_rad = math.radians(true_ecliptic_obliquity)
geocentric_latitude_rad = math.radians(geocentric_latitude)
a = math.sin(geocentric_latitude_rad) * math.cos(true_ecliptic_obliquity_rad)
b = math.cos(geocentric_latitude_rad) * math.sin(true_ecliptic_obliquity_rad) * math.sin(apparent_sun_longitude_rad)
delta = math.asin(a + b)
return math.degrees(delta)
def GetGeocentricSunRightAscension(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude):
apparent_sun_longitude_rad = math.radians(apparent_sun_longitude)
true_ecliptic_obliquity_rad = math.radians(true_ecliptic_obliquity)
geocentric_latitude_rad = math.radians(geocentric_latitude)
a = math.sin(apparent_sun_longitude_rad) * math.cos(true_ecliptic_obliquity_rad)
b = math.tan(geocentric_latitude_rad) * math.sin(true_ecliptic_obliquity_rad)
c = math.cos(apparent_sun_longitude_rad)
alpha = math.atan2((a - b), c)
return math.degrees(alpha) % 360
# Heliocentric functions calculate angles relative to the center of the sun.
def GetHeliocentricLatitude(jme):
b0 = GetCoefficient(jme, constants.B0)
b1 = GetCoefficient(jme, constants.B1)
return math.degrees((b0 + (b1 * jme)) / 10 ** 8)
def GetHeliocentricLongitude(jme):
l0 = GetCoefficient(jme, constants.L0)
l1 = GetCoefficient(jme, constants.L1)
l2 = GetCoefficient(jme, constants.L2)
l3 = GetCoefficient(jme, constants.L3)
l4 = GetCoefficient(jme, constants.L4)
l5 = GetCoefficient(jme, constants.L5)
l = (l0 + l1 * jme + l2 * jme ** 2 + l3 * jme ** 3 + l4 * jme ** 4 + l5 * jme ** 5) / 10 ** 8
return math.degrees(l) % 360
def GetHourAngle(utc_datetime, longitude_deg):
solar_time = GetSolarTime(longitude_deg, utc_datetime)
return 15 * (12 - solar_time)
def GetIncidenceAngle(topocentric_zenith_angle, slope, slope_orientation, topocentric_azimuth_angle):
tza_rad = math.radians(topocentric_zenith_angle)
slope_rad = math.radians(slope)
so_rad = math.radians(slope_orientation)
taa_rad = math.radians(topocentric_azimuth_angle)
return math.degrees(math.acos(math.cos(tza_rad) * math.cos(slope_rad) + math.sin(slope_rad) * math.sin(tza_rad) * math.cos(taa_rad - math.pi - so_rad)))
def GetLocalHourAngle(apparent_sidereal_time, longitude, geocentric_sun_right_ascension):
return (apparent_sidereal_time + longitude - geocentric_sun_right_ascension) % 360
def GetMeanSiderealTime(julian_day):
# This function doesn't agree with Andreas and Reda as well as it should. Works to ~5 sig figs in current unit test
jc = julian.GetJulianCentury(julian_day)
sidereal_time = 280.46061837 + (360.98564736629 * (julian_day - 2451545.0)) + (0.000387933 * jc ** 2) - (jc ** 3 / 38710000)
return sidereal_time % 360
def GetNutationAberrationXY(jce, i, x):
y = constants.aberration_sin_terms
sigmaxy = 0.0
for j in range(len(x)):
sigmaxy += x[j] * y[i][j]
return sigmaxy
def GetNutation(jde):
abcd = constants.nutation_coefficients
jce = julian.GetJulianEphemerisCentury(jde)
nutation_long = []
nutation_oblique = []
x = PrecalculateAberrations(constants.buildPolyDict(), jce)
for i in range(len(abcd)):
sigmaxy = GetNutationAberrationXY(jce, i, x)
nutation_long.append((abcd[i][0] + (abcd[i][1] * jce)) * math.sin(math.radians(sigmaxy)))
nutation_oblique.append((abcd[i][2] + (abcd[i][3] * jce)) * math.cos(math.radians(sigmaxy)))
# 36000000 scales from 0.0001 arcseconds to degrees
nutation = {'longitude' : sum(nutation_long)/36000000.0, 'obliquity' : sum(nutation_oblique)/36000000.0}
return nutation
def GetParallaxSunRightAscension(projected_radial_distance, equatorial_horizontal_parallax, local_hour_angle, geocentric_sun_declination):
prd = projected_radial_distance
ehp_rad = math.radians(equatorial_horizontal_parallax)
lha_rad = math.radians(local_hour_angle)
gsd_rad = math.radians(geocentric_sun_declination)
a = -1 * prd * math.sin(ehp_rad) * math.sin(lha_rad)
b = math.cos(gsd_rad) - prd * math.sin(ehp_rad) * math.cos(lha_rad)
parallax = math.atan2(a, b)
return math.degrees(parallax)
def GetProjectedRadialDistance(elevation, latitude):
flattened_latitude_rad = math.radians(GetFlattenedLatitude(latitude))
latitude_rad = math.radians(latitude)
return math.cos(flattened_latitude_rad) + (elevation * math.cos(latitude_rad) / constants.earth_radius)
def GetProjectedAxialDistance(elevation, latitude):
flattened_latitude_rad = math.radians(GetFlattenedLatitude(latitude))
latitude_rad = math.radians(latitude)
return 0.99664719 * math.sin(flattened_latitude_rad) + (elevation * math.sin(latitude_rad) / constants.earth_radius)
def GetRadiusVector(jme):
r0 = GetCoefficient(jme, constants.R0)
r1 = GetCoefficient(jme, constants.R1)
r2 = GetCoefficient(jme, constants.R2)
r3 = GetCoefficient(jme, constants.R3)
r4 = GetCoefficient(jme, constants.R4)
return (r0 + r1 * jme + r2 * jme ** 2 + r3 * jme ** 3 + r4 * jme ** 4) / 10 ** 8
def GetRefractionCorrection(pressure_millibars, temperature_celsius, topocentric_elevation_angle):
tea = topocentric_elevation_angle
temperature_kelvin = temperature_celsius + 273.15
a = pressure_millibars * 283.0 * 1.02
b = 1010.0 * temperature_kelvin * 60.0 * math.tan(math.radians(tea + (10.3/(tea + 5.11))))
return a / b
def GetSolarTime(longitude_deg, utc_datetime):
day = GetDayOfYear(utc_datetime)
return (((utc_datetime.hour * 60) + utc_datetime.minute + (4 * longitude_deg) + EquationOfTime(day))/60)
# Topocentric functions calculate angles relative to a location on the surface of the earth.
def GetTopocentricAzimuthAngle(topocentric_local_hour_angle, latitude, topocentric_sun_declination):
"""Measured eastward from north"""
tlha_rad = math.radians(topocentric_local_hour_angle)
latitude_rad = math.radians(latitude)
tsd_rad = math.radians(topocentric_sun_declination)
a = math.sin(tlha_rad)
b = math.cos(tlha_rad) * math.sin(latitude_rad) - math.tan(tsd_rad) * math.cos(latitude_rad)
return 180.0 + math.degrees(math.atan2(a, b)) % 360
def GetTopocentricElevationAngle(latitude, topocentric_sun_declination, topocentric_local_hour_angle):
latitude_rad = math.radians(latitude)
tsd_rad = math.radians(topocentric_sun_declination)
tlha_rad = math.radians(topocentric_local_hour_angle)
return math.degrees(math.asin((math.sin(latitude_rad) * math.sin(tsd_rad)) + math.cos(latitude_rad) * math.cos(tsd_rad) * math.cos(tlha_rad)))
def GetTopocentricLocalHourAngle(local_hour_angle, parallax_sun_right_ascension):
return local_hour_angle - parallax_sun_right_ascension
def GetTopocentricSunDeclination(geocentric_sun_declination, projected_axial_distance, equatorial_horizontal_parallax, parallax_sun_right_ascension, local_hour_angle):
gsd_rad = math.radians(geocentric_sun_declination)
pad = projected_axial_distance
ehp_rad = math.radians(equatorial_horizontal_parallax)
psra_rad = math.radians(parallax_sun_right_ascension)
lha_rad = math.radians(local_hour_angle)
a = (math.sin(gsd_rad) - pad * math.sin(ehp_rad)) * math.cos(psra_rad)
b = math.cos(gsd_rad) - (pad * math.sin(ehp_rad) * math.cos(lha_rad))
return math.degrees(math.atan2(a, b))
def GetTopocentricSunRightAscension(projected_radial_distance, equatorial_horizontal_parallax, local_hour_angle,
apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude):
gsd = GetGeocentricSunDeclination(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
psra = GetParallaxSunRightAscension(projected_radial_distance, equatorial_horizontal_parallax, local_hour_angle, gsd)
gsra = GetGeocentricSunRightAscension(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
return psra + gsra
def GetTopocentricZenithAngle(latitude, topocentric_sun_declination, topocentric_local_hour_angle, pressure_millibars, temperature_celsius):
tea = GetTopocentricElevationAngle(latitude, topocentric_sun_declination, topocentric_local_hour_angle)
return 90 - tea - GetRefractionCorrection(pressure_millibars, temperature_celsius, tea)
def GetTrueEclipticObliquity(jme, nutation):
u = jme/10.0
mean_obliquity = 84381.448 - (4680.93 * u) - (1.55 * u ** 2) + (1999.25 * u ** 3) \
- (51.38 * u ** 4) -(249.67 * u ** 5) - (39.05 * u ** 6) + (7.12 * u ** 7) \
+ (27.87 * u ** 8) + (5.79 * u ** 9) + (2.45 * u ** 10)
return (mean_obliquity / 3600.0) + nutation['obliquity']
def PrecalculateAberrations(p, jce):
x = []
# order of 5 x.append lines below is important
x.append(p['MeanElongationOfMoon'](jce))
x.append(p['MeanAnomalyOfSun'](jce))
x.append(p['MeanAnomalyOfMoon'](jce))
x.append(p['ArgumentOfLatitudeOfMoon'](jce))
x.append(p['LongitudeOfAscendingNode'](jce))
return x