-
-
Notifications
You must be signed in to change notification settings - Fork 278
/
model_diff.py
261 lines (200 loc) · 7.89 KB
/
model_diff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from exllamav2 import(
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Cache_8bit,
ExLlamaV2Tokenizer,
model_init,
)
from exllamav2.attn import ExLlamaV2Attention
import argparse, os, math, time
import pandas, fastparquet
import torch
import torch.nn.functional as F
from exllamav2.conversion.tokenize import get_tokens
from exllamav2.util import list_live_tensors
import gc
import sys
import json
torch.cuda._lazy_init()
torch.set_printoptions(precision = 10)
parser = argparse.ArgumentParser(description = "Test layer-by-layer hidden state difference between two models")
parser.add_argument("-ed", "--eval_dataset", type = str, help = "Perplexity evaluation dataset (.parquet file)")
parser.add_argument("-er", "--eval_rows", type = int, default = 20, help = "Number of rows to apply from dataset")
parser.add_argument("-el", "--eval_length", type = int, default = 2048, help = "Max no. tokens per sample")
parser.add_argument("-ma", "--model_a", type = str, help = "Path to model A")
parser.add_argument("-mb", "--model_b", type = str, help = "Path to model B")
parser.add_argument("-k", "--keep_layers", type = int, default = 0, help = "Maintain state from model A for this many layers")
parser.add_argument("-tkm", "--topk_max", type = int, default = 5, help = "Max top-K interval to test")
args = parser.parse_args()
# Initialize both models
print(f" -- Model A: {args.model_a}")
print(f" -- Model B: {args.model_b}")
config = (ExLlamaV2Config(), ExLlamaV2Config())
config[0].model_dir = args.model_a
config[1].model_dir = args.model_b
config[0].prepare()
config[1].prepare()
config[0].max_batch_size = 1
config[1].max_batch_size = 1
config[0].arch_compat_overrides()
config[1].arch_compat_overrides()
model = (ExLlamaV2(config[0]), ExLlamaV2(config[1]))
model[0].load(lazy = True)
model[1].load(lazy = True)
num_modules = len(model[0].modules)
assert len(model[1].modules) == num_modules
# Tokenizer
print(f" -- Loading tokenizer")
tokenizer = ExLlamaV2Tokenizer(config[0])
with torch.no_grad():
# Input
print(f" -- Tokenizing eval data")
eval_tokens = get_tokens(args.eval_rows, args.eval_length, args.eval_dataset, tokenizer)
num_rows, seq_len = eval_tokens.shape
eval_tokens = [eval_tokens[i:i+1, :] for i in range(eval_tokens.shape[0])]
attn_params = ExLlamaV2Attention.Params(1, seq_len, 0, None, None)
# Get embeddings
print(f" -- Embeddings")
hidden_state = [[], []]
for i in [0, 1]:
module = model[i].modules[0]
module.load()
for j in range(num_rows):
hidden_state[i].append(module.forward(eval_tokens[j]))
module.unload()
# Forward
rfn_error = []
for idx in range(1, num_modules):
for i in [0, 1]:
module = model[i].modules[idx]
if i == 0:
print(f" -- {module.key + ' (' + module.name + ')':40}", end = "")
module.load()
for j in range(num_rows):
if i == 1 and idx <= args.keep_layers:
hidden_state[1][j] = hidden_state[0][j].clone()
else:
x = hidden_state[i][j].to("cuda:0")
x = module.forward(x, cache = None, attn_params = attn_params, past_len = 0, loras = None)
hidden_state[i][j] = x.to("cpu")
x = None
module.unload()
module = None
max_error_ = 0
rfn_error_sum = 0
mse_sum = 0
for j in range(num_rows):
x = hidden_state[0][j].to("cuda:0").float()
y = hidden_state[1][j].to("cuda:0").float()
rfn_error_sum += torch.linalg.norm(y[0] - x[0], 'fro') / torch.linalg.norm(x[0], 'fro').item()
x = None
y = None
rfn_error_ = rfn_error_sum / num_rows
print(f" rfn_error: {rfn_error_:8.6f}")
rfn_error.append(rfn_error_)
# Test outputs
def ppl(input_ids_, logits_):
logprob_sum_ = 0.0
logprob_count_ = 0
chunksize = logits_.shape[1] * 16000 // logits_.shape[2]
b_ = 0
while b_ < logits_.shape[1]:
a_ = b_
b_ = min(b_ + chunksize, logits_.shape[1])
logits_f = logits_[:, a_:b_, :].float() + 1e-10
target_ids = input_ids_[:, a_ + 1:b_ + 1].to(logits_.device)
log_probs = F.log_softmax(logits_f, dim=-1)
token_log_probs = log_probs.gather(-1, target_ids.unsqueeze(-1)).squeeze(-1)
logprob_sum_ += token_log_probs.sum().item()
logprob_count_ += target_ids.numel()
return logprob_sum_, logprob_count_
topk_max = args.topk_max
logprob_sum = [0, 0]
logprob_count = [0, 0]
kl_div_sum = 0
kl_div_count = 0
mse_sum = 0
mse_count = 0
topk_hits_sum = [[0] * topk_max, [0] * topk_max]
topk_hits_count = [[0] * topk_max, [0] * topk_max]
topk_agreement_sum = [0] * topk_max
topk_agreement_count = [0] * topk_max
print(f" -- Testing outputs")
b = 0
for j in range(num_rows):
# Perplexity
x = (hidden_state[0][j].to("cuda:0"), hidden_state[1][j].to("cuda:0"))
input_ids = eval_tokens[j]
top_indices = []
for i in [0, 1]:
logits = x[i][:, :-1, :]
logprob_sum__, logprob_count__ = ppl(input_ids, logits)
logprob_sum[i] += logprob_sum__
logprob_count[i] += logprob_count__
_, top_index = torch.topk(logits, topk_max, dim = -1)
top_index = top_index.cpu().view(-1, topk_max)
top_indices.append(top_index)
targets = input_ids[:, 1:].view(-1, 1)
for t in range(topk_max):
top_slice = top_index[:, :t + 1]
hits = torch.eq(targets, top_slice)
row_hits = hits.any(dim = 1)
topk_hits_sum[i][t] += row_hits.sum().item()
topk_hits_count[i][t] += top_slice.shape[0]
for t in range(topk_max):
top_slice_a = top_indices[0][:, :t + 1]
top_slice_b = top_indices[1][:, :t + 1]
hits = torch.eq(top_slice_a, top_slice_b)
row_hits = hits.all(dim = 1)
topk_agreement_sum[t] += row_hits.sum().item()
topk_agreement_count[t] += top_slice_a.shape[0]
epsilon = 1e-10
probs_a = torch.softmax(x[0].float(), dim = -1)
probs_b = torch.softmax(x[1].float(), dim = -1)
kl_div = F.kl_div(torch.log(probs_a + epsilon), probs_b, reduction = 'none')
kl_div_sum += kl_div.sum(dim = -1).mean().item()
mse_sum += F.mse_loss(probs_a, probs_b)
mse_count += 1
perplexity = (math.exp(-logprob_sum[0] / logprob_count[0]), math.exp(-logprob_sum[1] / logprob_count[1]))
mse = mse_sum / mse_count
kl_div = kl_div_sum / num_rows
a_acc = []
b_acc = []
a_acc_str = ""
b_acc_str = ""
agree_str = ""
topk_agree = []
for t in range(topk_max):
a_acc_ = topk_hits_sum[0][t] / topk_hits_count[0][t]
b_acc_ = topk_hits_sum[1][t] / topk_hits_count[1][t]
topk_agree_ = topk_agreement_sum[t] / topk_agreement_count[t]
a_acc.append(a_acc_)
b_acc.append(b_acc_)
topk_agree.append(topk_agree_)
a_acc_str += f"{a_acc_:6.4f} "
b_acc_str += f"{b_acc_:6.4f} "
agree_str += f"{topk_agree_:6.4f} "
# CSV output
print()
print("-----------------")
print()
print(";".join([f"{p:.8f}" for p in perplexity]))
print()
print(f"{kl_div:.8f}")
print(f"{mse:.8f}")
print()
for i in range(topk_max):
print(f"{i+1};{a_acc[i]:.8f};{b_acc[i]:.8f};{topk_agree[i]:.8f}")
print()
for idx, err in enumerate(rfn_error):
print(f"{idx};{err:.8f}")
print()
print("-----------------")
print()
# Results
print(f" -- A, ppl: {perplexity[0]:11.8f} acc: {a_acc_str}")
print(f" -- B, ppl: {perplexity[1]:11.8f} acc: {b_acc_str}")
print(f" -- Top-K agreement: {agree_str}")
print(f" -- KL divergence: {kl_div:11.8f}")
print(f" -- MSE: {mse:11.8f}")