-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathswa.py
149 lines (117 loc) · 4.78 KB
/
swa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python
"""
Stochastic Weight Averaging (SWA)
Averaging Weights Leads to Wider Optima and Better Generalization
https://github.com/timgaripov/swa
"""
import torch
import models
from tqdm import tqdm
def moving_average(net1, net2, alpha=1.):
for param1, param2 in zip(net1.parameters(), net2.parameters()):
param1.data *= (1.0 - alpha)
param1.data += param2.data * alpha
def _check_bn(module, flag):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
flag[0] = True
def check_bn(model):
flag = [False]
model.apply(lambda module: _check_bn(module, flag))
return flag[0]
def reset_bn(module):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
module.running_mean = torch.zeros_like(module.running_mean)
module.running_var = torch.ones_like(module.running_var)
def _get_momenta(module, momenta):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
momenta[module] = module.momentum
def _set_momenta(module, momenta):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
module.momentum = momenta[module]
def bn_update(loader, model):
"""
BatchNorm buffers update (if any).
Performs 1 epochs to estimate buffers average using train dataset.
:param loader: train dataset loader for buffers average estimation.
:param model: model being update
:return: None
"""
if not check_bn(model):
return
model.train()
momenta = {}
model.apply(reset_bn)
model.apply(lambda module: _get_momenta(module, momenta))
n = 0
pbar = tqdm(loader, unit="images", unit_scale=loader.batch_size)
for batch in pbar:
input = batch['input'].cuda()
b = input.size(0)
momentum = b / (n + b)
for module in momenta.keys():
module.momentum = momentum
model(input)
n += b
model.apply(lambda module: _set_momenta(module, momenta))
if __name__ == '__main__':
import argparse
from pathlib import Path
from torchvision.transforms import Compose
from torch.utils.data import DataLoader, ConcatDataset
from datasets import *
from models import *
from utils import *
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--input", type=str, help='input directory')
parser.add_argument("--output", type=str, default='swa_model.pth', help='output model file')
parser.add_argument("--batch-size", type=int, default=50, help='batch size')
parser.add_argument("--dataset", choices=['librispeech', 'bolorspeech'], default='bolorspeech',
help='dataset name')
parser.add_argument("--model", choices=['jasper', 'w2l', 'crnn'], default='crnn',
help='choices of neural network')
args = parser.parse_args()
train_transform = Compose([LoadMagSpectrogram(), ComputeMelSpectrogramFromMagSpectrogram()])
if args.dataset == 'librispeech':
from datasets.libri_speech import LibriSpeech, vocab
train_dataset = ConcatDataset([
LibriSpeech(name='train-clean-100', transform=train_transform),
LibriSpeech(name='train-clean-360', transform=train_transform),
LibriSpeech(name='train-other-500', transform=train_transform)
])
else:
from datasets.bolor_speech import BolorSpeech, vocab
train_dataset = ConcatDataset([
BolorSpeech(name='train', transform=train_transform),
BolorSpeech(name='annotation', transform=train_transform),
BolorSpeech(name='demo', transform=train_transform)
])
directory = Path(args.input)
files = [f for f in directory.iterdir() if f.suffix == ".pth"]
assert(len(files) > 1)
def load_model(f):
if args.model == 'jasper':
model = TinyJasper(vocab)
elif args.model == 'w2l':
model = TinyWav2Letter(vocab)
else:
model = Speech2TextCRNN(vocab)
checkpoint = torch.load(f)
model.load_state_dict(checkpoint['state_dict'])
model.float()
return model.cuda()
def save_model(model, f):
torch.save({
'epoch': -1,
'global_step': -1,
'state_dict': model.state_dict(),
'optimizer': {},
}, f)
net = load_model(files[0])
for i, f in enumerate(files[1:]):
net2 = load_model(f)
moving_average(net, net2, 1. / (i + 2))
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size,
collate_fn=collate_fn, drop_last=True, num_workers=4)
net.cuda()
bn_update(train_dataloader, net)
save_model(net, args.output)