forked from novoalab/EpiNano
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEpinano_DiffErr.R
262 lines (233 loc) · 11.2 KB
/
Epinano_DiffErr.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env Rscript
args = commandArgs (trailingOnly=TRUE)
if (length(args) == 0 ) {
stop ("\n\ntry --help|-h to display help msg!!\n\n")
}
suppressMessages (library(optparse))
option_list <- list (
make_option (c("-c","--coverage"), type="integer", default=30,
help="minimum coverage/depth; default: 30"),
make_option (c("-t", "--threshold"), type="double", default=3,
help="minimum z-score (i.e., number of standard deviation from mean) to determine modified sites; default: 3"),
make_option (c("-d", "--deviance"), type="double", default=0.1,
help="minimum deviance of selected feature between two samples; default: 0.1"),
make_option (c("-f","--feature"), type="character",
help="the feature (column name(s) in from input file) to use to predict modifications"),
make_option (c("-k", "--ko_sample"), type="character",
help="knockout/unmodified sample"),
make_option (c("-w","--wt_sample"), type="character",
help="wildtype/modified sample"),
make_option (c("-o","--out_prefix"), type="character",
help="output prefix"),
make_option (c("-p", '--plot'), type="logical", default=0, action="store_true",
help = "whether or not generate plots; default: no plots will be generated because Epinano_Plot.R can do the job")
)
parser <- parse_args (OptionParser (option_list=option_list, usage="
DiffErr.R v0.1 compares a given feature between two samples. It predict potential modified sites mainly through two methods:
1. compute deviance of selected featuers between samples and then calculate z-scores. Outliers or potential modified sites will then
be determined based on user-defined threshold. Note that this is not suit for our published curlcakes construct data becos they are full of modifications.
2. fit a linear regression model between two samples.
1) detect residuals outliers of the given linear model.
2) compute z-scores of residuals for each observation in turn and determine outliers using user-defined z-score threshold.
Examples:
1 compare sum_err between two samples
Rscript Epinano_DiffErr.R -k ko.csv -w wt.csv -t 3 -o Test -c 30 -f sum_err -d 0.1
2 same as above, but generate plots, one for each reference.
Rscript Epinano_DiffErr.R -k ko.csv -w wt.csv -t 3 -o Test -c 30 -f sum_err -d 0.1 -p
"))
suppressMessages (library (outliers))
suppressMessages (library(reshape2))
suppressMessages (library(ggplot2))
suppressMessages (library(car))
suppressMessages (library(ggrepel))
suppressMessages (library(tidyverse))
if (!is.na(parser$feature)) {
feature <- parser$feature
} else {
stop ('please provide the feature you would like to use to detect modification' )
}
if (!is.na(parser$out_prefix)) {
prefix <- parser$out_prefix
} else {
prefix <- 'DirrErrOut'
}
if (!is.na(parser$coverage)) {
coverage <- parser$coverage
} else {
coverage <- 30
}
if (!is.na(parser$deviance)) {
deviance <- parser$deviance
} else {
deviance <- 0.1
}
if (!is.na(parser$threshold)) {
threshold <- parser$threshold
} else {
threshold <- 3
}
if (!is.na(parser$plot)) {
plot <- parser$plot
} else {
plot <- 0
}
if (!is.na(parser$ko_sample)) {
ko <- parser$ko_sample
} else {
stop ('please provide the 1st Error/Variants features table you would like to use to detect modification' )
}
if (!is.na(parser$wt_sample)) {
wt <- parser$wt_sample
} else {
stop ('please provide the 2nd Error/Variants features table you would like to use to detect modification' )
}
out1 = paste (prefix,".","delta-",feature,".prediction.csv", sep="")
out2 = paste (prefix,"linear-regression","prediction.csv", sep=".")
ko <- read.csv (ko, header = T)
wt <- read.csv (wt, header = T)
Chrs <- unique(unique(ko$X.Ref), unique(wt$X.Ref))
cleanup <- function(input, label, coverage, feature) {
input <- input[input$cov>coverage,]
#Filter read starts
input <- input[input$pos>20, ]
#Add a column with position
input$position <- paste(input$X.Ref,input$pos, input$base, input$strand)
#Change column names
input <- input[, c("X.Ref","pos","position", "base", "strand", feature)]
colnames(input) <- c("Chr","Position","chr_pos","base","strand", feature)
data_melted <- melt(data = input, id.vars = c("Chr", "Position", "chr_pos", "base", "strand"))
colnames(data_melted)[which(names(data_melted) == "value")] <- paste(label, "value", sep="_")
to_drop <- c("Chr","Position", "base", "strand", "variable")
data_melted <- data_melted[,!(colnames(data_melted) %in% to_drop)]
return(data_melted)
}
dat1 <- cleanup(ko, 'ko', coverage, feature)
dat2 <- cleanup(wt, 'wt', coverage, feature)
#write.table (combine,file="ko.csv",sep=",",quote=FALSE, row.names=FALSE)
#write.table (combine,file="wt.csv",sep=",",quote=FALSE, row.names=FALSE)
combine <- merge(dat1, dat2, by="chr_pos")
#write.table (combine,file="combine.csv",sep=",",quote=FALSE, row.names=FALSE)
#primary_filt <- function (combine, feature, feature_deviance) {
#delta = paste("delta_", feature, sep="")
#combine$delta <- abs (combine$wt_value - combine$ko_value)
#names(combine)[ncol(combine)] <- delta
#print (head(combine ))
#stop()
#combine <- combine[combine[, ncol(combine)] > feature_deviance, ]
#}
univariate_outlier <- function (combine, Threshold, deviance, feature) {
delta = paste("delta_", feature, sep="")
combine$delta <- abs (combine$wt_value - combine$ko_value)
names(combine)[ncol(combine)] <- delta
combine$z_scores <- scores (combine[,ncol(combine)], type="z") # aka, analyze delta feature
combine$z_score_prediction <- ifelse(combine$z_scores > Threshold & combine[delta] > deviance, "mod", "unm")
colnames (combine)[which (names(combine) == "ko_value")] <- paste ("ko","feature",sep="_")
colnames (combine)[which (names(combine) == "wt_value")] <- paste ("wt","feature",sep="_")
return (combine)
}
multi_variate_outlier <- function (combine, deviance, feature) {
lmFit <- lm (wt_value ~ ko_value, data= combine)
test<-outlierTest(lmFit, cutoff=0.05, n.max=ncol(combine))
outlier_names <- names(test$rstudent)
combine$lm_Bonferroni_outlier_test <- ifelse (rownames(combine) %in% names(test$rstudent) & combine$wt_value-combine$ko_value > deviance, "mod","unm")
combine$lm_residuals <- lmFit$residuals
combine$lm_residuals_z_score <- scores (combine$lm_residuals, type='z')
combine$lm_residuals_z_scores_prediction <- ifelse (combine$lm_residuals_z_score > threshold & combine$wt_value - combine$ko_value>deviance, "mod","unm")
colnames (combine)[which (names(combine) == "ko_value")] <- paste ("ko",feature,sep="_")
colnames (combine)[which (names(combine) == "wt_value")] <- paste ("wt",feature,sep="_")
return (combine)
}
scatter_plot <- function (df, feature, out_pdf) {
pdf(file=out_pdf,height=5,width=20,onefile=FALSE)
ko_feature = paste ("ko_",feature,sep='')
wt_feature = paste ("wt_",feature,sep='')
#df$tmpX <- df[, colnames(df) %in% ko_feature]
#df$tmpY <- df[, colnames(df) %in% wt_feature]
mod = df[df$lm_residuals_z_scores_prediction=="mod",]
title = paste ('ko_',feature,' ~ ','wt_',feature,sep="")
print(ggplot(df, aes_string(x=ko_feature, y=wt_feature)) +
geom_point(size=2, color="grey")+
geom_abline(slope=1, intercept=0, linetype="dashed")+
geom_point(data=mod, size=2, color="red")+
geom_text_repel (data=mod, aes(label=Position), color='red',
box.padding = 0.35,
point.padding = 0.5,
segment.color = 'green') +
ggtitle(title) +
xlab(ko_feature) +
ylab(wt_feature) +
theme_bw() +
xlim (0,1) + ylim (0,1) +
theme(axis.text.x = element_text(face="bold", color="black",size=11),
axis.text.y = element_text(face="bold", color="black", size=11),
plot.title = element_text(color="black", size=15, face="bold.italic",hjust = 0.5),
axis.title.x = element_text(color="black", size=15, face="bold"),
axis.title.y = element_text(color="black", size=15, face="bold"),
panel.background = element_blank(),
axis.line = element_line(colour = "black", size=0.5),
legend.title = element_text(color = "black", size = 15,face="bold"),
legend.text = element_text(color = "black", size=15),
panel.grid.major = element_blank(), panel.grid.minor = element_blank()
) + coord_fixed()
)
dev.off()
#ggsave (out_pdf)
}
bar_plot <- function (df, feature, out_pdf) {
pdf(file=out_pdf,height=5,width=20,onefile=FALSE)
df$tmp_feature <- df[,4] # in order to pass name to ggplot
mod = df[df$z_score_prediction=="mod",]
#write.table(df, file = paste(out_pdf, '.csv',sep=""),sep=",", quote=FALSE, row.names=FALSE )
print(ggplot(df, aes_string(x="Position", y="tmp_feature")) +
geom_bar(stat = "identity", width=0.1, fill="#2a7886") +
geom_text_repel(data=mod, aes_string("Position", "tmp_feature", label="Position"), size=3, color="red", segment.size = 1, segment.color = "black")+
ggtitle(paste(chr, feature, sep="_"))+
xlab("Positions")+
ylab(feature) +
theme_bw()+
theme(axis.text.x = element_text(face="bold", color="black",size=11),
axis.text.y = element_text(face="bold", color="black", size=11),
plot.title = element_text(color="black", size=24, face="bold.italic",hjust = 0.5),
axis.title.x = element_text(color="black", size=15, face="bold"),
axis.title.y = element_text(color="black", size=15, face="bold"),
panel.background = element_blank(),
legend.position = "none",
axis.line = element_line(colour = "black", size=0.5)))
dev.off()
# ggsave (out_pdf)
}
n <- 0
for (chr in Chrs) {
sub <- combine[grepl(chr, combine$chr_pos, fixed=TRUE), ]
#sub <- primary_filt (sub, feature, deviance)
nrows = nrow (sub)
if (nrows>0) {
#sub_out = paste (chr,"sub.out.csv",sep="")
#print (chr)
#write.table(sub, file=sub_out, sep=",", quote=FALSE, row.names=FALSE)
delta_feature <-univariate_outlier(sub, threshold, deviance, feature)
lm_feature <- multi_variate_outlier(sub, deviance, feature)
if (n==0) {
write.table (delta_feature, file=out1, sep=",", quote=FALSE, row.names=FALSE)
write.table (lm_feature, file=out2, sep=",", quote=FALSE, row.names=FALSE)
} else {
write.table (delta_feature, file=out1, sep=",", append=TRUE, col.names=FALSE, row.names=FALSE, quote=FALSE)
write.table (lm_feature, file=out2, sep=",", append=TRUE, col.names=FALSE, row.names=FALSE, quote=FALSE)
}
pos<-c()
for (x in strsplit(delta_feature$chr_pos,' ', 4)) {pos <- c(pos, x[2])}
delta_feature$Position <- as.numeric (pos)
#delta_feature <- delta_feature [order(delta_feature$Position),]
pos<-c()
for (x in strsplit(lm_feature$chr_pos,' ', 4)) {pos <- c(pos, x[2])}
lm_feature$Position <- as.numeric (pos)
#lm_feature <- lm_feature [order(lm_feature$Position),]
n <- n + 1
if (plot) {
barplot <- paste (chr,".",prefix,".","delta-",feature,".bar.pdf", sep="")
bar_plot (delta_feature, paste ("delta_",feature, sep=""), barplot)
xyplot <- paste (chr,prefix,"linear-regression","scatter.pdf", sep=".")
scatter_plot (lm_feature, feature, xyplot)
}
}
}