Skip to content

Latest commit

 

History

History
143 lines (96 loc) · 3.85 KB

README.rst

File metadata and controls

143 lines (96 loc) · 3.85 KB

sparc

sparc helps you create user interfaces (UI) for editing data structures. No matter if you want to write a UI for an existing data structure or you start from scratch, sparc can speed up your work.

Check out the Examples section to see what sparc can do for you.

Currently, sparc only supports UI generation for the Qt framework via PyQt (currently PyQt5), but the sparc core is written in a generic way, so that it is rather easy to extend sparc for other GUI frameworks such as wxWidgets.

Dependencies

sparc is completely written in the Python programming language and has no dependencies.

Python (>= 3.6)

Optionally, if you want to use the gui module, the following dependencies exist

PyQt5

Installation

The easiest way to install or update sparc is using pip (or pipenv)

pip install -U sparc

If you want to install the latest version of sparc, just clone the github repository and install using setuptools

git clone git@github.com:tschruff/sparc.git
cd sparc
python3 setup.py install

If you want to develop with sparc you may install using the develop command instead of the install command.

Examples

The first example shows how to create a parameter tree from scratch.

from sparc import *

# first, we need a group node
# the root of our parameter collection
p = ParamGroupNode('calc')

# add a parameter node
c = ParamNode('m', 5.0, float)
p.add_child(c)

# add another node by providing the
# constructor arguments directly to
# the add_child method
p.add_child('a', 2.0, float)

# or add a whole bunch of nodes
p.add_children([
    dict(name='A', value=4.0, type=float),
    dict(name='∆', value='=F/A', type=float),
    dict(name='l', value='=A**0.5', type=float)
])

# ∆ and l are expression nodes
# they work like in Excel, i.e. the '= ...' notation
# and can use sibling nodes as variables

# retrieving node values is as simple as
value = p['l'].value()

If you have an existing data structure, sparc works a little bit different. Let's assume there is a data structure defined in some external module (so you have no chance to change it's definition).

class Data(object):

    def __init__(self, f, b):
        self._foo = f
        self._bar = b

    def foo(self):
        return self._foo

    def set_foo(self, f):
        self._foo = f

    def bar(self):
        return self._bar

    def set_bar(self, b):
        self._bar = b

You can now use sparc to wrap the getter and setter functions and create a parameter tree.

from sparc import *

unbound_param = ParamGroup('data')
unbound_param.add_children([
    dict(name='foo', type=int, fget=Data.foo, fset=Data.set_foo),
    dict(name='bar', type=float, fget=Data.bar, fset=Data.set_bar)
])

d = Data(4, 6.5)

# returns True
unbound_param['foo'].is_unbound()

# you must provide a Data instance to obtain it's value
unbound_param['foo'].value(obj=d)

Alternatively, you can wrap getter and setter methods.

d = Data(4, 6.5)

bound_param = ParamGroup('data')
bound_param.add_children([
    dict(name='foo', type=int, fget=d.foo, fset=d.set_foo),
    dict(name='bar', type=float, fget=d.bar, fset=d.set_bar)
])

# returns False
unbound_param['foo'].is_unbound()

# no nee to provide the Data instance for bound parameters
bound_param['foo'].value()

Developers

sparc is developed by Tobias Schruff <tobias.schruff@gmail.com>. Feel free to contact me for bugs or feature requests.