-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute_rfid.py
82 lines (65 loc) · 3.06 KB
/
compute_rfid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright (c) 2022-present, Kakao Brain Corp.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
import logging
import os
import torch
from rqvae.img_datasets import create_dataset
from rqvae.models import create_model
from rqvae.metrics.fid import compute_rfid
from rqvae.utils.config import load_config, augment_arch_defaults
def load_model(path, ema=False):
model_config = os.path.join(os.path.dirname(path), 'config.yaml')
config = load_config(model_config)
config.arch = augment_arch_defaults(config.arch)
model, _ = create_model(config.arch, ema=False)
ckpt = torch.load(path)['state_dict_ema'] if ema else torch.load(path)['state_dict']
model.load_state_dict(ckpt)
return model, config
def setup_logger(result_path):
log_fname = os.path.join(result_path, 'rfid.log')
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
handlers=[
logging.FileHandler(log_fname), logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
return logger
if __name__ == '__main__':
"""
Computes rFID, i.e., FID between val images and reconstructed images.
Log is saved to `rfid.log` in the same directory as the given vqvae model.
"""
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch-size', type=int, default=100,
help='Batch size to use')
parser.add_argument('--split', type=str, default='val')
parser.add_argument('--vqvae', type=str, default='', required=True,
help='vqvae path for recon FID')
args = parser.parse_args()
result_path = os.path.dirname(args.vqvae)
logger = setup_logger(result_path)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
vqvae_model, config = load_model(args.vqvae)
vqvae_model = vqvae_model.to(device)
vqvae_model = torch.nn.DataParallel(vqvae_model).eval()
logger.info(f'vqvae model loaded from {args.vqvae}')
dataset_trn, dataset_val = create_dataset(config, is_eval=True, logger=logger)
dataset = dataset_val if args.split in ['val', 'valid'] else dataset_trn
logger.info(f'measuring rFID on {config.dataset.type}/{args.split}')
rfid = compute_rfid(dataset, vqvae_model, batch_size=args.batch_size, device=device)
logger.info(f'rFID: {rfid:.4f}')