Skip to content

Commit

Permalink
Merge pull request broadinstitute#41 from broadinstitute/features/reg…
Browse files Browse the repository at this point in the history
…ion-proposal-network-losses

Region Proposal Network (RPN) classification and regression losses (WIP)
  • Loading branch information
0x00b1 authored Aug 17, 2017
2 parents c5e5f07 + 4d7c573 commit 14add26
Show file tree
Hide file tree
Showing 27 changed files with 1,433 additions and 744 deletions.
13 changes: 11 additions & 2 deletions AUTHORS.rst
Original file line number Diff line number Diff line change
@@ -1,4 +1,13 @@
keras-rcnn was written by Allen Goodman. It’s maintained by Allen Goodman and
various contributors:
keras-rcnn was written by Allen Goodman.

keras-rcnn is maintained by Allen Goodman and various contributors:

Hans Gaiser <j.c.gaiser@delftrobotics.com> @hgaiser

Yann Henon <yannhenon@gmail.com> @yhenon

Jane Hung <jyenhung@gmail.com> @jhung0

Jihong Ju <daniel.jihong.ju@gmail.com> @jujihong

Claire McQuin <mcquincl@gmail.com> @mcquin
163 changes: 136 additions & 27 deletions keras_rcnn/backend/common.py
Original file line number Diff line number Diff line change
@@ -1,27 +1,29 @@
import keras.backend
import numpy

import keras_rcnn.backend


def anchor(base_size=16, ratios=None, scales=None):
"""
Generates a regular grid of multi-aspect and multi-scale anchor boxes.
"""
if ratios is None:
ratios = keras.backend.variable(numpy.array([0.5, 1, 2]))
ratios = keras.backend.cast([0.5, 1, 2], keras.backend.floatx())

if scales is None:
scales = keras.backend.variable(numpy.array([8, 16, 32]))

base_anchor = keras.backend.variable(numpy.array([1, 1, base_size, base_size]) - 1)
scales = keras.backend.cast([8, 16, 32], keras.backend.floatx())
base_anchor = keras.backend.cast([1, 1, base_size, base_size], keras.backend.floatx()) - 1
base_anchor = keras.backend.expand_dims(base_anchor, 0)

ratio_anchors = _ratio_enum(base_anchor, ratios)

anchors = keras.backend.concatenate([_scale_enum(ratio_anchors[i, :], scales) for i in range(ratio_anchors.shape[0])], axis = 0)
anchors = _scale_enum(ratio_anchors, scales)

return anchors


def bbox_transform(ex_rois, gt_rois):
"""Compute bounding-box regression targets for an image."""
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0
ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths
Expand All @@ -37,22 +39,31 @@ def bbox_transform(ex_rois, gt_rois):
targets_dw = keras.backend.log(gt_widths / ex_widths)
targets_dh = keras.backend.log(gt_heights / ex_heights)

targets = keras.backend.stack((targets_dx, targets_dy, targets_dw, targets_dh))
targets = keras.backend.stack(
(targets_dx, targets_dy, targets_dw, targets_dh))

targets = keras.backend.transpose(targets)

return targets
return keras.backend.cast(targets, 'float32')


def clip(boxes, shape):
"""
Clips box coordinates to be within the width and height as defined in shape
"""
proposals = [
keras.backend.maximum(keras.backend.minimum(boxes[:, 0::4], shape[1] - 1), 0),
keras.backend.maximum(keras.backend.minimum(boxes[:, 1::4], shape[1] - 1), 0),
keras.backend.maximum(keras.backend.minimum(boxes[:, 2::4], shape[1] - 1), 0),
keras.backend.maximum(keras.backend.minimum(boxes[:, 3::4], shape[0] - 1), 0)
keras.backend.maximum(
keras.backend.minimum(boxes[:, 0::4], shape[1] - 1), 0),
keras.backend.maximum(
keras.backend.minimum(boxes[:, 1::4], shape[0] - 1), 0),
keras.backend.maximum(
keras.backend.minimum(boxes[:, 2::4], shape[1] - 1), 0),
keras.backend.maximum(
keras.backend.minimum(boxes[:, 3::4], shape[0] - 1), 0)
]

return keras.backend.concatenate(proposals)
return keras.backend.concatenate(proposals, axis=1)


def _mkanchors(ws, hs, x_ctr, y_ctr):
Expand All @@ -61,21 +72,19 @@ def _mkanchors(ws, hs, x_ctr, y_ctr):
(x_ctr, y_ctr), output a set of anchors (windows).
"""

ws = keras.backend.expand_dims(ws, axis=1)
hs = keras.backend.expand_dims(hs, axis=1)
col1 = keras.backend.reshape(x_ctr - 0.5 * (ws - 1), (-1, 1))
col2 = keras.backend.reshape(y_ctr - 0.5 * (hs - 1), (-1, 1))
col3 = keras.backend.reshape(x_ctr + 0.5 * (ws - 1), (-1, 1))
col4 = keras.backend.reshape(y_ctr + 0.5 * (hs - 1), (-1, 1))
anchors = keras.backend.concatenate((col1, col2, col3, col4), axis=1)

anchors = keras.backend.concatenate((x_ctr - 0.5 * (ws - 1),
y_ctr - 0.5 * (hs - 1),
x_ctr + 0.5 * (ws - 1),
y_ctr + 0.5 * (hs - 1)), axis=1)
return anchors


def _ratio_enum(anchor, ratios):
"""
Enumerate a set of anchors for each aspect ratio wrt an anchor.
"""

w, h, x_ctr, y_ctr = _whctrs(anchor)
size = w * h
size_ratios = size / ratios
Expand All @@ -91,8 +100,8 @@ def _scale_enum(anchor, scales):
"""

w, h, x_ctr, y_ctr = _whctrs(anchor)
ws = w * scales
hs = h * scales
ws = keras.backend.expand_dims(w, 1) * scales
hs = keras.backend.expand_dims(h, 1) * scales
anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
return anchors

Expand All @@ -101,9 +110,109 @@ def _whctrs(anchor):
"""
Return width, height, x center, and y center for an anchor (window).
"""

w = anchor[2] - anchor[0] + 1
h = anchor[3] - anchor[1] + 1
x_ctr = anchor[0] + 0.5 * (w - 1)
y_ctr = anchor[1] + 0.5 * (h - 1)
w = anchor[:, 2] - anchor[:, 0] + 1
h = anchor[:, 3] - anchor[:, 1] + 1
x_ctr = anchor[:, 0] + 0.5 * (w - 1)
y_ctr = anchor[:, 1] + 0.5 * (h - 1)
return w, h, x_ctr, y_ctr


def shift(shape, stride):
"""
Produce shifted anchors based on shape of the map and stride size
"""
shift_x = keras.backend.arange(0, shape[0]) * stride
shift_y = keras.backend.arange(0, shape[1]) * stride

shift_x, shift_y = keras_rcnn.backend.meshgrid(shift_x, shift_y)
shift_x = keras.backend.reshape(shift_x, [-1])
shift_y = keras.backend.reshape(shift_y, [-1])

shifts = keras.backend.stack([
shift_x,
shift_y,
shift_x,
shift_y
], axis=0)

shifts = keras.backend.transpose(shifts)

anchors = keras_rcnn.backend.anchor()

number_of_anchors = keras.backend.shape(anchors)[0]

k = keras.backend.shape(shifts)[0] # number of base points = feat_h * feat_w

shifted_anchors = keras.backend.reshape(anchors, [1, number_of_anchors, 4]) + keras.backend.cast(keras.backend.reshape(shifts, [k, 1, 4]), keras.backend.floatx())

shifted_anchors = keras.backend.reshape(shifted_anchors, [k * number_of_anchors, 4])

return shifted_anchors


def overlap(a, b):
"""
Parameters
----------
a: (N, 4) ndarray of float
b: (K, 4) ndarray of float
Returns
-------
overlaps: (N, K) ndarray of overlap between boxes and query_boxes
"""
area = (b[:, 2] - b[:, 0] + 1) * (b[:, 3] - b[:, 1] + 1)

iw = keras.backend.minimum(keras.backend.expand_dims(a[:, 2], 1), b[:, 2]) - keras.backend.maximum(keras.backend.expand_dims(a[:, 0], 1), b[:, 0]) + 1
ih = keras.backend.minimum(keras.backend.expand_dims(a[:, 3], 1), b[:, 3]) - keras.backend.maximum(keras.backend.expand_dims(a[:, 1], 1), b[:, 1]) + 1

iw = keras.backend.maximum(iw, 0)
ih = keras.backend.maximum(ih, 0)

ua = keras.backend.expand_dims((a[:, 2] - a[:, 0] + 1) * (a[:, 3] - a[:, 1] + 1), 1) + area - iw * ih

ua = keras.backend.maximum(ua, 0.0001)

intersection = iw * ih

return intersection / ua


def filter_boxes(proposals, minimum):
"""
Filters proposed RoIs so that all have width and height at least as big as minimum
"""
ws = proposals[:, 2] - proposals[:, 0] + 1
hs = proposals[:, 3] - proposals[:, 1] + 1

indices = keras_rcnn.backend.where((ws >= minimum) & (hs >= minimum))

indices = keras.backend.flatten(indices)

return keras.backend.cast(indices, "int32")


def inside_image(boxes, im_info, allowed_border=0):
"""
Calc indices of boxes which are located completely inside of the image
whose size is specified by img_info ((height, width, scale)-shaped array).
:param boxes: (None, 4) tensor containing boxes in original image (x1, y1, x2, y2)
:param img_info: (height, width, scale)
:param allowed_border: allow boxes to be outside the image by allowed_border pixels
:return: (None, 4) indices of boxes completely in original image,
(None, 4) tensor of boxes completely inside image
"""

indices = keras_rcnn.backend.where(
(boxes[:, 0] >= -allowed_border) &
(boxes[:, 1] >= -allowed_border) &
(boxes[:, 2] < allowed_border + im_info[1]) & # width
(boxes[:, 3] < allowed_border + im_info[0]) # height
)

indices = keras.backend.cast(indices, "int32")

gathered = keras.backend.gather(boxes, indices)

return indices[:, 0], keras.backend.reshape(gathered, [-1, 4])
Loading

0 comments on commit 14add26

Please sign in to comment.