-
Notifications
You must be signed in to change notification settings - Fork 52
/
run_lama.py
252 lines (204 loc) · 10.2 KB
/
run_lama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from collections import defaultdict
from data_utils import load_dataset
from utils import *
def main():
all_lamas = [1001,101,103,106,108,127,1303,131,136,1376,138,140,1412,159,17,176,178,19,
190,20,264,27,276,279,30,31,36,361,364,37,39,407,413,449,463,47,495,527,530,740,937]
default_params = {
'model': 'gpt2-xl',
'dataset': None,
'seed': None,
'num_shots': None,
'expr_name': None,
'conditioned_on_correct_classes': False,
'subsample_test_set': 300, # max cap the max number of samples from one template
'unlabeled_pool_size': 300, # will not be used to compute cf
'api_num_log_prob': 500,
}
# generate all params to try
all_shots = [0, 1, 4, 8]
num_seeds = 5
all_params = []
for which_lama in all_lamas:
for num_shots in all_shots:
for seed in range(num_seeds):
p = deepcopy(default_params)
p['dataset'] = f"lama_{which_lama}"
p['seed'] = seed
p['num_shots'] = num_shots
p['expr_name'] = f"{p['dataset']}_{p['model']}_{p['num_shots']}shot_{repr(p['subsample_test_set'])}_subsample_seed{p['seed']}"
all_params.append(p)
freeze_test_set = True; freeze_training_pool = True
# experiment with each params
all_results = []
orig_accuracy_list = []
calibrated_accuracy_list = []
for param_index, params in enumerate(all_params):
print(f"\n{params['expr_name']}")
# load the data
all_train_sentences, all_train_labels, all_test_sentences, all_test_labels = load_dataset(params)
if params['template'] == "INVALID":
orig_accuracy_list.append(-1)
calibrated_accuracy_list.append(-1)
continue
# sample test set
if params['subsample_test_set'] is None:
test_sentences, test_labels = all_test_sentences, all_test_labels
print(f"selecting full test set ({len(all_test_labels)})")
else:
if freeze_test_set:
np.random.seed(0) # always use seed 0 result if freeze
else:
np.random.seed(params['seed'])
sample_test_size = min(len(all_test_labels), params['subsample_test_set'])
test_sentences, test_labels = random_sampling(all_test_sentences, all_test_labels, sample_test_size)
print(f"selecting {len(test_labels)} subsample of test set")
# sample unlabeled training pool
if freeze_training_pool:
np.random.seed(0) # always use seed 0 result if freeze
else:
np.random.seed(params['seed'])
sample_pool_size = min(len(all_train_labels), params['unlabeled_pool_size'])
train_sentences_pool, train_labels_pool = random_sampling(all_train_sentences, all_train_labels, sample_pool_size)
# sample training examples
np.random.seed(params['seed'])
train_sentences, train_labels = random_sampling(train_sentences_pool, train_labels_pool, params['num_shots'])
# get all model responses
all_responses, all_prompts = get_model_response(params, train_sentences, train_labels, test_sentences, return_all_prompts=True)
### calculate calibrated accuracy
# collect all possible options
all_options = set()
for resp in all_responses:
logprobs = resp['logprobs']['top_logprobs'][0] # first token
options = list(logprobs.keys())
options = options[:min(100, len(options))]
all_options.update(options)
# get log prob for each option in the set
cf_tokens = ["[MASK]", "N/A", "BLANK"]
cf_probs_dict = defaultdict(lambda: [])
if "gpt2" in params['model']:
cf_prompts = []
for entity in cf_tokens:
prompt = params['prompt_func'](params, train_sentences, train_labels, entity, test_label_option=None)
cf_prompts.append(prompt)
all_resp = complete(cf_prompts, 1, model=params['model'], num_log_probs=50000)
for resp in all_resp['choices']:
log_prob = resp['logprobs']['top_logprobs'][0]
for token, lp in log_prob.items():
cf_probs_dict[token].append(np.exp(lp))
else:
cf_prompts = []
for option in all_options:
for entity in cf_tokens:
prompt = params['prompt_func'](params, train_sentences, train_labels, entity, test_label_option=option)
cf_prompts.append(prompt)
cf_prompts_chunked = list(chunks(cf_prompts, chunk_size_helper(params)))
for chunk_id, prompt_chunk in enumerate(cf_prompts_chunked):
all_resp = complete(prompt_chunk, 0, model=params['model'], echo=True, num_log_probs=1)
for resp in all_resp['choices']:
log_prob = resp['logprobs']['token_logprobs'][-1]
token = resp['logprobs']['tokens'][-1]
prob = np.exp(log_prob)
cf_probs_dict[token].append(prob)
new_cf_dict = {}
for k, v in cf_probs_dict.items():
new_cf_dict[k] = np.min(v) # Notice: Min across ensemble of placeholders
cf_probs_dict = new_cf_dict
all_calibrated_ans = []
all_orig_ans = []
error_count = 0
total_count = 0
for resp in all_responses:
# get all probs
orig_probs_list = []
cf_probs_list = []
all_tokens = []
logprobs = resp['logprobs']['top_logprobs'][0] # first token
for token in list(logprobs.keys()):
total_count += 1
orig_prob = np.exp(logprobs[token])
if token in cf_probs_dict.keys():
cf_prob = cf_probs_dict[token]
orig_probs_list.append(orig_prob)
cf_probs_list.append(cf_prob)
all_tokens.append(token)
else: # hmm cannot find it
error_count += 1
orig_probs_list = np.array(orig_probs_list)
cf_probs_list = np.array(cf_probs_list)
# normalize both original probs and cf probs so that both sum to 1
orig_probs_list = orig_probs_list / np.sum(orig_probs_list)
cf_probs_list = cf_probs_list / np.sum(cf_probs_list)
# contextual calibration
W = np.identity(len(orig_probs_list))
b = -1 * np.expand_dims(cf_probs_list, axis=-1)
calibrate_label_probs = np.matmul(W, np.expand_dims(orig_probs_list, axis=-1)) + b
best_idx = np.argmax(calibrate_label_probs)
best_idx_original = np.argmax(orig_probs_list)
all_calibrated_ans.append(all_tokens[best_idx])
all_orig_ans.append(all_tokens[best_idx_original])
error_frac = error_count/total_count
if error_frac > 0.01: print(f"WARNING: re-encode error frac: {error_frac:.2f}")
orig_correctness_list = []
orig_ans_list = []
for model_ans, ans in zip(all_orig_ans, test_labels):
model_ans = model_ans.strip()
orig_ans_list.append(model_ans)
if model_ans == ans:
orig_correctness_list.append(1)
else:
orig_correctness_list.append(0)
orig_correctness = np.mean(orig_correctness_list)
print(f"Accuracy: {orig_correctness:.5f}")
calibrated_correctness_list = []
calibrated_ans_list = []
for model_ans, ans in zip(all_calibrated_ans, test_labels):
model_ans = model_ans.strip()
calibrated_ans_list.append(model_ans)
if model_ans == ans:
calibrated_correctness_list.append(1)
else:
calibrated_correctness_list.append(0)
calibrated_correctness = np.mean(calibrated_correctness_list)
print(f"New accuracy: {calibrated_correctness:.5f}")
orig_accuracy_list.append(orig_correctness)
calibrated_accuracy_list.append(calibrated_correctness)
### savings
result = dict()
result['seed'] = params['seed']
result['train_sentences'] = train_sentences
result['train_labels'] = train_labels
result['test_sentences'] = test_sentences
result['test_labels'] = test_labels
result['all_responses'] = all_responses
result['cf_probs_dict'] = cf_probs_dict
# answers
result['orig_ans_list'] = orig_ans_list
result['calibrated_ans_list'] = calibrated_ans_list
# accuracies
result['orig_correctness'] = orig_correctness
result['calibrated_correctness'] = calibrated_correctness
all_results.append(result)
for p in all_params:
p["single_prompt_func"] = None
p["prompt_func"] = None
all_results.insert(0, all_params)
orig_accuracy_list = [acc for acc in orig_accuracy_list if acc >= 0]
calibrated_accuracy_list = [acc for acc in calibrated_accuracy_list if acc >= 0]
assert len(orig_accuracy_list) == len(calibrated_accuracy_list)
orig_accuracy_list = np.reshape(orig_accuracy_list, (len(all_lamas), num_seeds))
calibrated_accuracy_list = np.reshape(calibrated_accuracy_list, (len(all_lamas), num_seeds))
combined_accuracy = np.mean(orig_accuracy_list, axis=0) # across 41 tasks
calibrated_combined_accuracy = np.mean(calibrated_accuracy_list, axis=0) # across 41 tasks
print(f"Original | Mean: {np.mean(combined_accuracy):.4f}, Low: {np.min(combined_accuracy):.4f}, High: {np.max(combined_accuracy):.4f}, Std: {np.std(combined_accuracy):.4f}")
print(f"Normalized | Mean: {np.mean(calibrated_combined_accuracy):.4f}, Low: {np.min(calibrated_combined_accuracy):.4f}, High: {np.max(calibrated_combined_accuracy):.4f}, Std: {np.std(calibrated_combined_accuracy):.4f}")
# saving
file_name = f"LAMA_{default_params['model']}_{all_shots[0]}shot_{repr(default_params['subsample_test_set'])}subsample_"
from datetime import datetime
dt_string = datetime.now().strftime("%d_%m_%Y_%H:%M:%S")
file_name += dt_string
with open(file_name, 'wb') as f:
pickle.dump(all_results, f)
print("Saved to", file_name)
if __name__ == '__main__':
main()