forked from nzhagen/jcamp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jcamp.py
735 lines (633 loc) · 30.3 KB
/
jcamp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
# -*- coding: UTF-8 -*-
# See the LICENSE.rst file for licensing information.
import datetime
from numpy import array, append, arange, logical_not, log10, nan, isnan, linspace, amax, amin
import re
import pdb
'''
jcamp.py contains functions useful for parsing JCAMP-DX formatted files containing spectral data. The main
function `jcamp_readfile()` formats the input file into a Python dictionary, while `jcamp_calc_xsec()`
converts a given JCAMP-style data dictionary from absorption units to cross-section (m^2).
The bottom of the file contains an example script, so that if the module is run by itself, it will show several
spectra plotted from data in repository folders.
'''
__authors__ = 'Nathan Hagen'
__license__ = 'MIT/X11 License'
__contact__ = 'Nathan Hagen <and.the.light.shattered@gmail.com>'
__all__ = ['jcamp_readfile', 'parse_longdate', 'jcamp_read', 'jcamp_calc_xsec', 'is_float', 'get_value', 'jcamp_parse',
'jcamp_writefile', 'jcamp_write']
__version__ = '1.2.2'
## In SQZ_digits, '+' or '-' is for PAC, ',' for CSV.
SQZ_digits = {'@':'+0', 'A':'+1', 'B':'+2', 'C':'+3', 'D':'+4', 'E':'+5', 'F':'+6', 'G':'+7', 'H':'+8', 'I':'+9',
'a':'-1', 'b':'-2', 'c':'-3', 'd':'-4', 'e':'-5', 'f':'-6', 'g':'-7', 'h':'-8', 'i':'-9',
'+':'+', '-':'-', ',':' '}
DIF_digits = {'%': 0, 'J':1, 'K':2, 'L':3, 'M':4, 'N':5, 'O':6, 'P':7, 'Q':8, 'R':9,
'j':-1, 'k':-2, 'l':-3, 'm':-4, 'n':-5, 'o':-6, 'p':-7, 'q':-8, 'r':-9}
DUP_digits = {'S':1, 'T':2, 'U':3, 'V':4, 'W':5, 'X':6, 'Y':7, 'Z':8, 's':9}
## The specification allows multiple formats for representing LONGDATE.
## See `FRACTIONAL_SECONDS_PATTERN` below for the optional token representing fractional seconds.
## These fractional seconds are removed in advance. Thus `%N` is not referenced in the formats below.
DATE_FORMATS = ["%Y/%m/%d %H:%M:%S %z", "%Y/%m/%d %H:%M:%S", "%Y/%m/%d"]
## The optional token describing the fractional seconds is referenced in the specification as `.SSSS`.
## This number of digits (four) is rather unclear, since the usual presentation of a fraction of
## seconds would contain either 3, 6 or 9 digits.
FRACTIONAL_SECONDS_PATTERN = re.compile(
r"^\d{4}/\d{2}/\d{2} +\d{2}:\d{2}\d{2}(?P<fractional_seconds>\d{1,9})"
)
##=====================================================================================================
def jcamp_readfile(filename):
'''
Open a JDX-format file for reading, and call `jcamp_read` to parse it into a dictionary.
Parameters
----------
filename : str
The name of the JCAMP-DX file to read.
Returns
-------
datadict : dict
The dictionary containing the file information --- header and data both.
'''
with open(filename, 'rb') as filehandle:
datadict = jcamp_read(filehandle)
datadict['filename'] = filename
return(datadict)
##=====================================================================================================
def parse_longdate(date_string: str) -> datetime.datetime:
"""parse the "LONGDATE" field according to the JCAMP-DX specification
raises ValueError in case of problems
"""
fractional_seconds_match = FRACTIONAL_SECONDS_PATTERN.search(date_string)
if fractional_seconds_match:
## Remove the fractional seconds string - it would complicate `strptime`.
date_string = FRACTIONAL_SECONDS_PATTERN.sub("", date_string)
## Try to interprete the fractional seconds. The JCAMP specification (v6.00) does not
## explain, how a string of arbitrary length is supposed to be interpreted.
## Thus we are just guessing based on the number of digits.
fraction_seconds_string = fractional_seconds_match.group("fractional_seconds")
if len(fraction_seconds_string) in {7, 8, 9}:
## This is probably nanoseconds.
microseconds = int(int(fraction_seconds_string) / 1000)
elif len(fraction_seconds_string) in {4, 5, 6}:
microseconds = int(fraction_seconds_string)
elif len(fraction_seconds_string) in {1, 2, 3}:
microseconds = 1000 * int(fraction_seconds_string)
else:
## We should never end up here.
raise ValueError("Fractional seconds string could not be parsed: {}".format(fraction_seconds_string))
else:
microseconds = 0
## Parse the date and time.
for fmt in DATE_FORMATS:
try:
parsed = datetime.datetime.strptime(date_string, fmt)
except ValueError:
pass
else:
## Inject the previously parsed microseconds
return parsed.replace(microsecond=microseconds)
else:
raise ValueError("Failed to parse the date string: {}".format(date_string))
##=====================================================================================================
def jcamp_read(filehandle):
'''
Read a JDX-format file, and return a dictionary containing the header info, a 1D numpy vectors `x` for the
abscissa information (e.g. wavelength or wavenumber) and `y` for the ordinate information (e.g. transmission).
Parameters
----------
filehandle : file object
The object representing the JCAMP-DX filename to read.
Returns
-------
jcamp_dict : dict
The dictionary containing the header and data vectors.
'''
jcamp_dict = {}
y = []
x = []
datastart = False
is_compound = False
in_compound_block = False
compound_block_contents = []
re_num = re.compile(r'\d+')
lhs = None
for line in filehandle:
## When parsing compound files, the input is an array of strings, so no need to decode it twice.
if hasattr(line, 'decode'):
line = line.decode('utf-8','ignore')
if not line.strip():
continue
if line.startswith('$$'):
continue
## Detect the start of a compound block
if is_compound and line.upper().startswith('##TITLE'):
in_compound_block = True
compound_block_contents = [line]
continue
## If we are reading a compound block, collect lines into an array to be processed by a
## recursive call this this function.
if in_compound_block:
## Store this line.
compound_block_contents.append(line)
## Detect the end of the compound block.
if line.upper().startswith('##END'):
## Process the entire block and put it into the children array.
jcamp_dict['children'].append(jcamp_read(compound_block_contents))
in_compound_block = False
compound_block_contents = []
continue
## Lines beginning with '##' are header lines.
if line.startswith('##'):
line = line.strip('##')
(lhs,rhs) = line.split('=', 1)
lhs = lhs.strip().lower()
rhs = rhs.strip()
#continuation = rhs.endswith('=')
if rhs.isdigit():
jcamp_dict[lhs] = int(rhs)
elif is_float(rhs):
jcamp_dict[lhs] = float(rhs)
# processes numbers whose decimal separator is a comma and not a dot.
elif is_float(rhs.replace(",", ".", 1)):
jcamp_dict[lhs] = float(rhs.replace(",", ".", 1))
else:
jcamp_dict[lhs] = rhs
## Detect compound files.
## See table XI in http://www.jcamp-dx.org/protocols/dxir01.pdf
if (lhs in {'data type', 'datatype'}) and (rhs.lower() == 'link'):
is_compound = True
jcamp_dict['children'] = []
if (lhs in ('xydata', 'xypoints', 'peak table')):
## This is a new data entry, reset x and y.
x = []
y = []
datastart = True
datatype = rhs
## Calculate x-steps from mandatory metadata. If "xfactor" is not available in
## jcamp_dict, then use 1.0 as default.
if ('lastx' in jcamp_dict) and ('firstx' in jcamp_dict) and ('npoints' in jcamp_dict):
dx = (jcamp_dict["lastx"] - jcamp_dict["firstx"]) / (jcamp_dict["npoints"] - 1)
else:
dx = 1.0
dx /= jcamp_dict.get("xfactor",1)
continue ## data starts on next line
elif (lhs == 'end'):
bounds = [int(i) for i in re_num.findall(rhs)]
datastart = True
datatype = bounds
datalist = []
continue
elif lhs == 'longdate':
try:
parsed = parse_longdate(jcamp_dict[lhs])
except ValueError:
## Keep the original date string.
pass
else:
## Replace the string with the datetime object.
jcamp_dict[lhs] = parsed
elif datastart:
datastart = False
elif lhs is not None and not datastart: # multiline entry
jcamp_dict[lhs] += '\n{}'.format(line.strip())
if datastart and (datatype == '(X++(Y..Y))'):
## If the line does not start with '##' or '$$' then it should be a data line.
## The pair of lines below involve regex splitting on floating point numbers and integers. We can't just
## split on spaces because JCAMP allows minus signs to replace spaces in the case of negative numbers.
## Check the first data line only if ASDF format is implemented.
if not len(y):
## Check if the format is AFFN or ASDF:
if any(l in DIF_digits for l in line):
ASDF_format_detected = True
else:
ASDF_format_detected = False
datavals = jcamp_parse(line)
## X-check: Is the calculated x-value the same as in first value in line?
## Actual implementation checks whether difference is below 1.
## This threshold might require adjustment to higher values if needed (not encountered so far).
## line_last will be generated after reading first line, see code below.
if "line_last" in locals():
next_x = line_last[0] + line_last[1] * dx
if (abs(datavals[0] - next_x) > 1):
print(f"X-Check failed. Expected value is {datavals[0]} but {next_x} has been calculated.")
## Only for ASDF format: Do y-checks (to ensure line integrity) and
## do y-value aggregation appropriately
if ASDF_format_detected:
if len(y):
line_last = (datavals[0], len(datavals[2:]))
## Y-check: first y-value is used to check with last y-value to ensure integrity of all DIF
## operations done on previous line
if (datavals[1] != y[-1]):
print(f"Y-Check failed. Last value of previous line is {y[-1]} but first value is {datavals[1]}.")
## Aggregate y-values.
for dataval in datavals[2:]:
y.append(float(dataval))
else:
## Aggregate y-values; first line does not contain y-checks.
for dataval in datavals[1:]:
y.append(float(dataval))
## Define last x and number of y-values for next x-check.
line_last = (datavals[0], len(y) - 1)
else:
line_last = (datavals[0], len(datavals[1:]))
for dataval in datavals[1:]:
y.append(float(dataval))
elif datastart and (('xypoints' in jcamp_dict) or ('xydata' in jcamp_dict)) and (datatype == '(XY..XY)'):
datavals = [v.strip() for v in re.split(r"[,;\s]", line) if v] ## be careful not to allow empty strings
if not all(is_float(datavals)): continue
datavals = array(datavals)
x.extend(datavals[0::2]) ## every other data point starting at the zeroth
y.extend(datavals[1::2]) ## every other data point starting at the first
elif datastart and ('peak table' in jcamp_dict) and (datatype == '(XY..XY)'):
datavals = [v.strip() for v in re.split(r"[,;\s]", line) if v] ## be careful not to allow empty strings
if not all(is_float(datavals)): continue
datavals = array(datavals)
x.extend(datavals[0::2]) ## every other data point starting at the zeroth
y.extend(datavals[1::2]) ## every other data point starting at the first
elif datastart and isinstance(datatype,list):
## If the line does not start with '##' or '$$' then it should be a data line.
## The pair of lines below involve regex splitting on floating point numbers and integers. We can't just
## split on spaces because JCAMP allows minus signs to replace spaces in the case of negative numbers.
datavals = jcamp_parse(line)
datalist += datavals
if ('xydata' in jcamp_dict) and (jcamp_dict['xydata'] == '(X++(Y..Y))'):
## You got all of the Y-values. Next you need to figure out how to generate the missing X's...
## According to JCAMP-DX specifications, the metadata contains actual x-values.
## X-values in the xydata-table are used for x-checks only. The variable "xfactor" is used
## to compress x-values, so decompression of actual x-values is not needed anymore.
x = linspace(jcamp_dict["firstx"], jcamp_dict["lastx"], jcamp_dict["npoints"])
y = array([float(yval) for yval in y])
else:
x = array([float(xval) for xval in x])
y = array([float(yval) for yval in y])
## The "xfactor" variables contain any scaling information that may need to be applied
## to the data. Go ahead and apply them.
if ('xfactor' in jcamp_dict):
x = x * jcamp_dict['xfactor']
## Check if arrays are the same length.
if len(x) != len(y):
print(f"Mismatch of array lengths found: len(x) is {len(x)} and len(y) {len(y)}.")
## The "yfactor" variables contain any scaling information that may need to be applied
## to the data. Go ahead and apply them.
if ('yfactor' in jcamp_dict):
y *= jcamp_dict['yfactor']
jcamp_dict['x'] = x
jcamp_dict['y'] = y
return(jcamp_dict)
##=====================================================================================================
def jcamp_calc_xsec(jcamp_dict, wavemin=None, wavemax=None, skip_nonquant=True, debug=False):
'''
Taking as input a JDX file, extract the spectrum information and transform the absorption spectrum from existing
units to absorption cross-section.
This function also corrects for unphysical data (such as negative transmittance values, or transmission above
1.0), and calculates absorbance if transmittance given. Instead of a return value, the function inserts the
information into the input dictionary.
Note that the conversion assumes that the measurements were collected for gas at a temperature of 296K (23 degC).
Parameters
----------
jcamp_dict : dict
A JCAMP spectrum dictionary.
wavemin : float, optional
The shortest wavelength in the spectrum to limit the calculation to.
wavemax : float, optional
The longest wavelength in the spectrum to limit the calculation to.
skip_nonquant: bool
If True then return "None" if the spectrum is missing quantitative data. If False, then try to fill in \
missing quantitative values with defaults.
'''
x = array(jcamp_dict['x']) ## use 'array' to force a copy so that we cannot change the original data
y = array(jcamp_dict['y']) ## use 'array' to force a copy so that we cannot change the original data
T = 296.0 ## the temperature (23 degC) used by NIST when collecting spectra
R = 1.0355E-25 ## the constant for converting data (includes the gas constant)
## Note: normally when we convert from wavenumber to wavelength units, the ordinate must be nonuniformly
## rescaled in order to compensate. But this is only true if we resample the abscissa to a uniform sampling
## grid. In this case here, we keep the sampling grid nonuniform in wavelength space, such that each digital
## bin retains its proportionality to energy, which is what we want.
if (jcamp_dict['xunits'].lower() in ('1/cm', 'cm-1', 'cm^-1')):
jcamp_dict['wavenumbers'] = array(x) ## note that array() always performs a copy
x = 10000.0 / x
jcamp_dict['wavelengths'] = x
elif (jcamp_dict['xunits'].lower() in ('micrometers', 'um', 'wavelength (um)')):
jcamp_dict['wavelengths'] = x
jcamp_dict['wavenumbers'] = 10000.0 / x
elif (jcamp_dict['xunits'].lower() in ('nanometers', 'nm', 'wavelength (nm)')):
x = x / 1000.0
jcamp_dict['wavelengths'] = x
jcamp_dict['wavenumbers'] = 10000.0 / x
else:
raise ValueError('Don\'t know how to convert the spectrum\'s x units ("' + jcamp_dict['xunits'] + '") to micrometers.')
## Correct for any unphysical negative values.
y[y < 0.0] = 0.0
## Make sure "y" refers to absorbance.
if (jcamp_dict['yunits'].lower() == 'transmittance'):
## If in transmittance, then any y > 1.0 are unphysical.
y[y > 1.0] = 1.0
## Convert to absorbance.
okay = (y > 0.0)
y[okay] = log10(1.0 / y[okay])
y[logical_not(okay)] = nan
jcamp_dict['absorbance'] = y
elif (jcamp_dict['yunits'].lower() == 'absorbance'):
pass
elif (jcamp_dict['yunits'].lower() == '(micromol/mol)-1m-1 (base 10)'):
jcamp_dict['yunits'] = 'xsec (m^2))'
jcamp_dict['xsec'] = y / 2.687e19
return
else:
raise ValueError('Don\'t know how to convert the spectrum\'s y units ("' + jcamp_dict['yunits'] + '") to absorbance.')
## Determine the effective path length "ell" of the measurement chamber, in meters.
if ('path length' in jcamp_dict):
(val,unit) = jcamp_dict['path length'].lower().split()[0:2]
if (unit == 'cm'):
ell = float(val) / 100.0
elif (unit == 'm'):
ell = float(val)
elif (unit == 'mm'):
ell = float(val) / 1000.0
else:
ell = 0.1
else:
if skip_nonquant: return({'info':None, 'x':None, 'xsec':None, 'y':None})
ell = 0.1
if debug: print('Path length variable not found. Using 0.1m as a default ...')
assert(len(x) == len(y))
if ('npoints' in jcamp_dict):
if (len(x) != jcamp_dict['npoints']):
npts_retrieved = str(len(x))
msg = '"' + jcamp_dict['title'] + '": Number of data points retrieved (' + npts_retrieved + \
') does not equal the expected length (npoints = ' + str(jcamp_dict['npoints']) + ')!'
raise ValueError(msg)
## For each gas, manually define the pressure "p" at which the measurement was taken (in units of mmHg).
## These values are obtained from the NIST Infrared spectrum database, which for some reason did not
## put the partial pressure information into the header.
if ('partial_pressure' in jcamp_dict):
p = float(jcamp_dict['partial_pressure'].split()[0])
p_units = jcamp_dict['partial_pressure'].split()[1]
if (p_units.lower() == 'mmhg'):
pass
elif (p_units.lower() == 'ppm'):
p = p * 759.8 * 1.0E-6 ## scale PPM units at atmospheric pressure to partial pressure in mmHg
else:
if debug: print('Partial pressure variable value for ' + jcamp_dict['title'] + ' is missing. Using the default p = 150.0 mmHg ...')
if skip_nonquant: return({'info':None, 'x':None, 'xsec':None, 'y':None})
p = 150.0
## Convert the absorbance units to cross-section in meters squared per molecule.
xsec = y * T * R / (p * ell)
## Add the "xsec" values to the data dictionary.
jcamp_dict['xsec'] = xsec
return
##=====================================================================================================
def is_float(s):
'''
Test if a string, or list of strings, contains a numeric value(s).
Parameters
----------
s : str, or list of str
The string or list of strings to test.
Returns
-------
is_float_bool : bool or list of bool
A single boolean or list of boolean values indicating whether each input can be converted into a float.
'''
if isinstance(s,tuple) or isinstance(s,list):
if not all(isinstance(i, str) for i in s):
raise TypeError("Input {} is not a list of strings".format(s))
if (len(s) == 0):
raise ValueError('Input {} is empty'.format(s))
else:
bool = list(True for i in range(0,len(s)))
for i in range(0,len(s)):
try:
float(s[i])
except ValueError:
bool[i] = False
return(bool)
else:
if not isinstance(s, str):
raise TypeError("Input '%s' is not a string" % (s))
try:
float(s)
return(True)
except ValueError:
return(False)
##=====================================================================================================
def get_value(num, is_dif, vals):
n = float(num)
if is_dif:
lastval = vals[-1]
val = n + lastval
else:
val = n
return(val)
##=====================================================================================================
def jcamp_parse(line):
line = line.strip()
datavals = []
num = ""
## Convert whitespace into single space by splitting the string then re-assembling with single spaces.
line = ' '.join(line.split())
## If there are any coded digits, then replace the codes with the appropriate numbers.
## 'DUP_digits': ("duplicate suppression") replaces all but first value if two or more adjacent y-values
# are identical
## 'DIF_digits': ("difference form") replace delimiter, leading digit and sign of the difference between
## adjacent values
## 'SQZ_digits': ("squeezed form") replace delimiter, leading digit and sign
DUP_set = set(DUP_digits)
if any(c in DUP_set for c in line):
## Split the line into individual characters so that you can check for coded characters one-by-one.
newline = ''
for (i,c) in enumerate(line):
if (c in DUP_digits):
## Check for last DIF_digit which is start of last y-value by default, so that all
## characters belonging to last value is fully decompressed by DUP compression.
back = 1
while line[i-back] not in DIF_digits:
back += 1
prev_c = line[i-back:i]
mul = DUP_digits[c]
newline += prev_c * (mul-1)
else:
mul = ''
newline += c
line = "".join(newline)
DIF = False
for c in line:
if c.isdigit() or (c == "."):
num += c
elif (c == ' '):
DIF = False
if num:
n = get_value(num, DIF, datavals)
datavals.append(n)
num = ''
elif (c in SQZ_digits):
DIF = False
if num:
n = get_value(num, DIF, datavals)
datavals.append(n)
num = SQZ_digits[c]
elif (c in DIF_digits):
if num:
n = get_value(num, DIF, datavals)
datavals.append(n)
DIF = True
num = str(DIF_digits[c])
else:
raise Exception("Unknown character (%s) encountered while parsing data" % c)
if num:
n = get_value(num, DIF, datavals)
datavals.append(n)
return(datavals)
##=====================================================================================================
def jcamp_writefile(filename, jcamp_dict_input, linewidth=75):
'''
Write a JDX-format file for a given data dictionary.
Parameters
----------
filename : str
The name of the JCAMP-DX file to write.
jcamp_dict : dict
The input dictionary to write.
linewidth : int, optional
The maximum line width to allow when writing data lines.
'''
## Explicitly copy the input dictionary so that changes are not reflected in the input.
jcamp_dict = dict(jcamp_dict_input)
jcamp_dict['filename'] = filename
with open(filename, 'w') as filehandle:
jcamp_str = jcamp_write(jcamp_dict, linewidth=linewidth)
filehandle.write(jcamp_str)
return
##=====================================================================================================
def jcamp_write(jcamp_dict, linewidth=75):
'''
Convert a dictionary into a JDX-format string for easy writing to a file. At a minimum, the input dictionary must
contain the keys 'x' and 'y' for the data, and these two vectors must have the same length.
Parameters
----------
filename : str
The name of the JCAMP-DX file to write.
jcamp_dict : dict
The input dictionary to write.
linewidth : int, optional
The maximum line width to allow when writing data lines.
Returns
----------
jcamp_str : str
The JCAMP_DX formatted string containing the input dictionary's information.
'''
if ('x' not in jcamp_dict):
raise ValueError('The input dictionary *must* have an "x" variable for writing to a JCAMP file.')
if ('y' not in jcamp_dict):
raise ValueError('The input dictionary *must* have a "y" variable for writing to a JCAMP file.')
js = ''
## Write the first line.
js += "##JCAMP-DX=5.01\n"
## First write out the header.
for key in jcamp_dict:
if key in ('x','y','xydata','end'):
continue
js += f"##{key.upper()}={str(jcamp_dict[key])}\n"
## Determine whether the spectra have a title and a datetime field in the labels, by default, the title if any will
## be is the first string; the timestamp will be the fist datetime.datetime.
x = jcamp_dict['x']
y = jcamp_dict['y']
if 'firstx' not in jcamp_dict:
js += f"##FIRSTX={jcamp_dict['x'][0]:.6f}\n"
if 'lastx' not in jcamp_dict:
js += f"##LASTX={jcamp_dict['x'][-1]:.6f}\n"
if 'maxx' not in jcamp_dict:
js += f"##MAXX={amax(jcamp_dict['x']):.6f}\n"
if 'minx' not in jcamp_dict:
js += f"##MINX={amin(jcamp_dict['x']):.6f}\n"
if 'firsty' not in jcamp_dict:
js += f"##FIRSTY={jcamp_dict['y'][0]:.4f}\n"
if 'lasty' not in jcamp_dict:
js += f"##LASTY={jcamp_dict['y'][-1]:.4f}\n"
if 'maxy' not in jcamp_dict:
js += f"##MAXY={amax(jcamp_dict['y']):.4f}\n"
if 'miny' not in jcamp_dict:
js += f"##MINY={amin(jcamp_dict['y']):.4f}\n"
npts = jcamp_dict.get('npts', len(jcamp_dict['x']))
js += f"##NPOINTS={npts}\n"
js += f"##XFACTOR={jcamp_dict.get('xfactor', 1)}\n"
yfactor = jcamp_dict.get('yfactor', 1)
js += f"##YFACTOR={yfactor}\n"
js += "##XYDATA=(X++(Y..Y))\n"
line = f"{jcamp_dict['x'][0]:.6f} "
for j in arange(npts):
if isnan(jcamp_dict['y'][j]):
line += '? '
else:
line += f"{jcamp_dict['y'][j] / yfactor:.4f} "
print(npts-1, j, linewidth, len(line), f'"{line}"')
if (len(line) >= linewidth) or (j == npts-1):
js += line + '\n'
if (j < npts-1):
line = f"{jcamp_dict['x'][j+1]:.6f} "
js += '##END=\n'
return(js)
## =================================================================================================
## =================================================================================================
if (__name__ == '__main__'):
import matplotlib.pyplot as plt
filename = './data/infrared_spectra/ethylene.jdx'
jcamp_dict = jcamp_readfile(filename)
plt.plot(jcamp_dict['x'], jcamp_dict['y'])
plt.title(filename)
plt.xlabel(jcamp_dict['xunits'])
plt.ylabel(jcamp_dict['yunits'])
## Example of writing a Python/Numpy dictionary to a JCAMP-DX file.
jcamp_writefile('temp.jdx', jcamp_dict, linewidth=45)
## Example of converting an optical spectrum into absorption cross-section units.
jcamp_calc_xsec(jcamp_dict, skip_nonquant=False, debug=False)
plt.figure()
plt.plot(jcamp_dict['wavelengths'], jcamp_dict['xsec'])
plt.title(filename)
plt.xlabel('wavelength (um)')
plt.ylabel('absorption cross-section (m^2)')
filename = './data/uvvis_spectra/toluene.jdx'
plt.figure()
jcamp_dict = jcamp_readfile(filename)
plt.plot(jcamp_dict['x'], jcamp_dict['y'], 'r-')
plt.title(filename)
plt.xlabel(jcamp_dict['xunits'])
plt.ylabel(jcamp_dict['yunits'])
filename = './data/mass_spectra/ethanol_ms.jdx'
jcamp_dict = jcamp_readfile(filename)
plt.figure()
for n in arange(len(jcamp_dict['x'])):
plt.plot((jcamp_dict['x'][n],jcamp_dict['x'][n]), (0.0, jcamp_dict['y'][n]), 'm-', linewidth=2.0)
plt.title(filename)
plt.xlabel(jcamp_dict['xunits'])
plt.ylabel(jcamp_dict['yunits'])
filename = './data/raman_spectra/tannic_acid.jdx'
jcamp_dict = jcamp_readfile(filename)
plt.figure()
plt.plot(jcamp_dict['x'], jcamp_dict['y'], 'k-')
plt.title(filename)
plt.xlabel(jcamp_dict['xunits'])
plt.ylabel(jcamp_dict['yunits'])
filename = './data/neutron_scattering_spectra/emodine.jdx'
jcamp_dict = jcamp_readfile(filename)
plt.figure()
plt.plot(jcamp_dict['x'], jcamp_dict['y'], 'k-')
plt.title(filename)
plt.xlabel(jcamp_dict['xunits'])
plt.ylabel(jcamp_dict['yunits'])
filename = './data/infrared_spectra/example_compound_file.jdx'
jcamp_dict = jcamp_readfile(filename)
plt.figure()
for c in jcamp_dict['children']:
plt.plot(c['x'], c['y'])
plt.xlabel(jcamp_dict['children'][0]['xunits']) ## assume all blocks have the same units
plt.ylabel(jcamp_dict['children'][0]['yunits'])
plt.title(filename)
filename = './data/infrared_spectra/example_multiline_datasets.jdx'
jcamp_dict = jcamp_readfile(filename)
plt.figure()
plt.plot(jcamp_dict['x'], jcamp_dict['y'])
plt.title(filename)
plt.xlabel(jcamp_dict['xunits'])
plt.ylabel(jcamp_dict['yunits'])
print(jcamp_dict['comments'])
plt.show()