-
Notifications
You must be signed in to change notification settings - Fork 3.1k
/
ops_hsa.py
278 lines (231 loc) · 15.8 KB
/
ops_hsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from __future__ import annotations
import ctypes, functools, subprocess, io, atexit, collections, json
from typing import Tuple, TypeVar, List, Dict, Any
import tinygrad.runtime.autogen.hsa as hsa
from tinygrad.helpers import DEBUG, init_c_var, from_mv, round_up, to_mv, init_c_struct_t, getenv
from tinygrad.device import Compiled, Compiler, CompileError, BufferOptions, LRUAllocator
from tinygrad.renderer.cstyle import HIPRenderer
from tinygrad.runtime.driver.hsa import check, scan_agents, find_memory_pool, AQLQueue
from tinygrad.runtime.driver.hip_comgr import compile_hip
if getenv("IOCTL"): import extra.hip_gpu_driver.hip_ioctl # noqa: F401
PROFILE = getenv("PROFILE", 0)
class HSAProfiler:
def __init__(self):
self.tracked_signals = collections.defaultdict(list)
self.collected_events: List[Tuple[Any, ...]] = []
self.copy_timings = hsa.hsa_amd_profiling_async_copy_time_t()
self.disp_timings = hsa.hsa_amd_profiling_dispatch_time_t()
def track(self, signal, device, name, is_copy=False): self.tracked_signals[device].append((signal, name, is_copy))
def process(self, device):
# Process all tracked signals, should be called before any of tracked signals are reused.
for sig,name,is_copy in self.tracked_signals[device]:
if is_copy: check(hsa.hsa_amd_profiling_get_async_copy_time(sig, ctypes.byref(timings := self.copy_timings)))
else: check(hsa.hsa_amd_profiling_get_dispatch_time(device.agent, sig, ctypes.byref(timings := self.disp_timings))) #type:ignore
self.collected_events.append((device.device_id, 1 if is_copy else 0, name, timings.start, timings.end))
self.tracked_signals.pop(device)
def save(self, path):
mjson = []
for i in range(len(HSADevice.devices)):
mjson.append({"name": "process_name", "ph": "M", "pid": i, "args": {"name": "HSA"}})
mjson.append({"name": "thread_name", "ph": "M", "pid": i, "tid": 0, "args": {"name": "AQL"}})
mjson.append({"name": "thread_name", "ph": "M", "pid": i, "tid": 1, "args": {"name": "SDMA"}})
for dev_id,queue_id,name,st,et in self.collected_events:
mjson.append({"name": name, "ph": "B", "pid": dev_id, "tid": queue_id, "ts": st*1e-3})
mjson.append({"name": name, "ph": "E", "pid": dev_id, "tid": queue_id, "ts": et*1e-3})
with open(path, "w") as f: f.write(json.dumps({"traceEvents": mjson}))
print(f"Saved HSA profile to {path}")
Profiler = HSAProfiler()
class HSACompiler(Compiler):
def __init__(self, arch:str):
self.arch = arch
super().__init__(f"compile_hip_{self.arch}")
def compile(self, src:str) -> bytes:
try: return compile_hip(src, self.arch)
except RuntimeError as e: raise CompileError(e)
class HSAProgram:
def __init__(self, device:HSADevice, name:str, lib:bytes):
self.device, self.name, self.lib = device, name, lib
if DEBUG >= 6:
asm = subprocess.check_output(["/opt/rocm/llvm/bin/llvm-objdump", '-d', '-'], input=lib)
print('\n'.join([x for x in asm.decode('utf-8').split("\n") if 's_code_end' not in x]))
self.exec = init_c_var(hsa.hsa_executable_t(), lambda x: check(hsa.hsa_executable_create_alt(hsa.HSA_PROFILE_FULL, hsa.HSA_DEFAULT_FLOAT_ROUNDING_MODE_DEFAULT, None, ctypes.byref(x)))) # noqa: E501
self.code_reader = init_c_var(hsa.hsa_code_object_reader_t(),
lambda x: check(hsa.hsa_code_object_reader_create_from_memory(lib, len(lib), ctypes.byref(x))))
check(hsa.hsa_executable_load_agent_code_object(self.exec, self.device.agent, self.code_reader, None, None))
check(hsa.hsa_executable_freeze(self.exec, None))
self.kernel = init_c_var(hsa.hsa_executable_symbol_t(), lambda x: check(hsa.hsa_executable_get_symbol_by_name(self.exec, (name+".kd").encode("utf-8"), ctypes.byref(self.device.agent), ctypes.byref(x)))) # noqa: E501
self.handle = init_c_var(ctypes.c_uint64(), lambda x: check(hsa.hsa_executable_symbol_get_info(self.kernel, hsa.HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, ctypes.byref(x)))) # noqa: E501
self.kernargs_segment_size = init_c_var(ctypes.c_uint32(), lambda x: check(hsa.hsa_executable_symbol_get_info(self.kernel, hsa.HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, ctypes.byref(x)))).value # noqa: E501
self.group_segment_size = init_c_var(ctypes.c_uint32(), lambda x: check(hsa.hsa_executable_symbol_get_info(self.kernel, hsa.HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, ctypes.byref(x)))).value # noqa: E501
self.private_segment_size = init_c_var(ctypes.c_uint32(), lambda x: check(hsa.hsa_executable_symbol_get_info(self.kernel, hsa.HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, ctypes.byref(x)))).value # noqa: E501
def __del__(self):
self.device.synchronize()
if hasattr(self, 'code_reader'): check(hsa.hsa_code_object_reader_destroy(self.code_reader))
if hasattr(self, 'exec'): check(hsa.hsa_executable_destroy(self.exec))
def __call__(self, *args, global_size:Tuple[int,int,int]=(1,1,1), local_size:Tuple[int,int,int]=(1,1,1), vals:Tuple[int, ...]=(), wait=False):
if not hasattr(self, "args_struct_t"):
self.args_struct_t = init_c_struct_t(tuple([(f'f{i}', ctypes.c_void_p) for i in range(len(args))] +
[(f'v{i}', ctypes.c_int) for i in range(len(vals))]))
if ctypes.sizeof(self.args_struct_t) != self.kernargs_segment_size:
raise RuntimeError(f"HSAProgram.__call__: incorrect args struct size {ctypes.sizeof(self.args_struct_t)} != {self.kernargs_segment_size}")
kernargs = None
if self.kernargs_segment_size > 0:
kernargs = self.device.alloc_kernargs(self.kernargs_segment_size)
args_st = self.args_struct_t.from_address(kernargs)
for i in range(len(args)): args_st.__setattr__(f'f{i}', args[i])
for i in range(len(vals)): args_st.__setattr__(f'v{i}', vals[i])
self.device.flush_hdp()
signal = self.device.alloc_signal(reusable=True) if wait or PROFILE else None
self.device.hw_queue.submit_kernel(self, global_size, local_size, kernargs, completion_signal=signal)
if PROFILE: Profiler.track(signal, self.device, self.name)
if wait:
hsa.hsa_signal_wait_scacquire(signal, hsa.HSA_SIGNAL_CONDITION_LT, 1, (1 << 64) - 1, hsa.HSA_WAIT_STATE_ACTIVE)
check(hsa.hsa_amd_profiling_get_dispatch_time(self.device.agent, signal, ctypes.byref(timings := hsa.hsa_amd_profiling_dispatch_time_t())))
return (timings.end - timings.start) * self.device.clocks_to_time
T = TypeVar("T")
CHUNK_SIZE, PAGE_SIZE = 256*1024*1024, 0x1000
class HSAAllocator(LRUAllocator):
def __init__(self, device:HSADevice):
self.device = device
super().__init__()
def _alloc(self, size:int, options:BufferOptions):
if options.host:
check(hsa.hsa_amd_memory_pool_allocate(HSADevice.cpu_mempool, size, 0, ctypes.byref(mem := ctypes.c_void_p())))
check(hsa.hsa_amd_agents_allow_access(2, (hsa.hsa_agent_t*2)(HSADevice.cpu_agent, self.device.agent), None, mem))
return mem.value
else:
c_agents = (hsa.hsa_agent_t * len(HSADevice.agents[hsa.HSA_DEVICE_TYPE_GPU]))(*HSADevice.agents[hsa.HSA_DEVICE_TYPE_GPU])
check(hsa.hsa_amd_memory_pool_allocate(self.device.gpu_mempool, size, 0, ctypes.byref(buf := ctypes.c_void_p())))
check(hsa.hsa_amd_agents_allow_access(len(HSADevice.agents[hsa.HSA_DEVICE_TYPE_GPU]), c_agents, None, buf))
return buf.value
def _free(self, opaque:T, options:BufferOptions):
HSADevice.synchronize_system()
check(hsa.hsa_amd_memory_pool_free(opaque))
def copyin(self, dest:T, src: memoryview):
# Async copyin sync model uses barriers on the main hw queue, since barriers are guaranteed to execute in order with all other packets.
self.device.hw_queue.submit_barrier([], sync_signal := self.device.alloc_signal(reusable=True))
mem = self._alloc(src.nbytes, BufferOptions(host=True))
ctypes.memmove(mem, from_mv(src), src.nbytes)
check(hsa.hsa_amd_memory_async_copy_on_engine(dest, self.device.agent, mem, HSADevice.cpu_agent, src.nbytes, 1, ctypes.byref(sync_signal),
copy_signal := self.device.alloc_signal(reusable=True), hsa.HSA_AMD_SDMA_ENGINE_0, True))
self.device.hw_queue.submit_barrier([copy_signal])
self.device.delayed_free.append(mem)
if PROFILE: Profiler.track(copy_signal, self.device, f"copyin: CPU -> HSA:{self.device.device_id}", is_copy=True)
def copy_from_fd(self, dest, fd, offset, size):
self.device.hw_queue.submit_barrier([], sync_signal := self.device.alloc_signal(reusable=True))
if not hasattr(self, 'hb'):
self.hb = [self._alloc(CHUNK_SIZE, BufferOptions(host=True)) for _ in range(2)]
self.hb_signals = [self.device.alloc_signal(reusable=False) for _ in range(2)]
self.hb_polarity = 0
self.sdma = [hsa.HSA_AMD_SDMA_ENGINE_0, hsa.HSA_AMD_SDMA_ENGINE_1]
for sig in self.hb_signals: hsa.hsa_signal_store_relaxed(sig, 0)
fo = io.FileIO(fd, "a+b", closefd=False)
fo.seek(offset - (minor_offset:=offset % PAGE_SIZE))
copies_called = 0
copied_in = 0
for local_offset in range(0, size+minor_offset, CHUNK_SIZE):
local_size = min(round_up(size+minor_offset, PAGE_SIZE)-local_offset, CHUNK_SIZE)
copy_size = min(local_size-minor_offset, size-copied_in)
if copy_size == 0: break
hsa.hsa_signal_wait_scacquire(self.hb_signals[self.hb_polarity], hsa.HSA_SIGNAL_CONDITION_LT, 1, (1 << 64) - 1, hsa.HSA_WAIT_STATE_ACTIVE)
self.device.reusable_signals.append(self.hb_signals[self.hb_polarity]) # it's free now and can be reused
self.hb_signals[self.hb_polarity] = self.device.alloc_signal(reusable=False)
fo.readinto(to_mv(self.hb[self.hb_polarity], local_size))
check(hsa.hsa_amd_memory_async_copy_on_engine(dest+copied_in, self.device.agent, self.hb[self.hb_polarity]+minor_offset, HSADevice.cpu_agent,
copy_size, 1, ctypes.byref(sync_signal), self.hb_signals[self.hb_polarity],
self.sdma[self.hb_polarity], True))
copied_in += copy_size
self.hb_polarity = (self.hb_polarity + 1) % len(self.hb)
minor_offset = 0 # only on the first
copies_called += 1
wait_signals = [self.hb_signals[self.hb_polarity - 1]]
if copies_called > 1: wait_signals.append(self.hb_signals[self.hb_polarity])
self.device.hw_queue.submit_barrier(wait_signals)
def copyout(self, dest:memoryview, src:T):
HSADevice.synchronize_system()
copy_signal = self.device.alloc_signal(reusable=True)
c_agents = (hsa.hsa_agent_t*2)(self.device.agent, HSADevice.cpu_agent)
check(hsa.hsa_amd_memory_lock_to_pool(from_mv(dest), dest.nbytes, c_agents, 2, HSADevice.cpu_mempool, 0, ctypes.byref(addr:=ctypes.c_void_p())))
check(hsa.hsa_amd_memory_async_copy(addr, HSADevice.cpu_agent, src, self.device.agent, dest.nbytes, 0, None, copy_signal))
hsa.hsa_signal_wait_scacquire(copy_signal, hsa.HSA_SIGNAL_CONDITION_LT, 1, (1 << 64) - 1, hsa.HSA_WAIT_STATE_ACTIVE)
check(hsa.hsa_amd_memory_unlock(from_mv(dest)))
if PROFILE: Profiler.track(copy_signal, self.device, f"copyout: HSA:{self.device.device_id} -> CPU", is_copy=True)
def transfer(self, dest:T, src:T, sz:int, src_dev=None, dest_dev=None):
src_dev.hw_queue.submit_barrier([], sync_signal_1 := src_dev.alloc_signal(reusable=True))
dest_dev.hw_queue.submit_barrier([], sync_signal_2 := dest_dev.alloc_signal(reusable=True))
c_wait_signal = (hsa.hsa_signal_t*2)(sync_signal_1, sync_signal_2)
check(hsa.hsa_amd_memory_async_copy_on_engine(dest, dest_dev.agent, src, src_dev.agent, sz, 2, c_wait_signal,
copy_signal := dest_dev.alloc_signal(reusable=False), hsa.HSA_AMD_SDMA_ENGINE_0, True))
src_dev.hw_queue.submit_barrier([copy_signal])
dest_dev.hw_queue.submit_barrier([copy_signal])
if PROFILE: Profiler.track(copy_signal, src_dev, f"transfer: HSA:{src_dev.device_id} -> HSA:{dest_dev.device_id}", is_copy=True)
class HSADevice(Compiled):
devices: List[HSADevice] = []
agents: Dict[int, List[hsa.hsa_agent_t]] = {}
cpu_agent: hsa.hsa_agent_t
cpu_mempool: hsa.hsa_amd_memory_pool_t
def __init__(self, device:str=""):
if not HSADevice.agents:
check(hsa.hsa_init())
atexit.register(hsa_terminate)
HSADevice.agents = scan_agents()
HSADevice.cpu_agent = HSADevice.agents[hsa.HSA_DEVICE_TYPE_CPU][0]
HSADevice.cpu_mempool = find_memory_pool(HSADevice.cpu_agent, segtyp=hsa.HSA_AMD_SEGMENT_GLOBAL, location=hsa.HSA_AMD_MEMORY_POOL_LOCATION_CPU)
if PROFILE: check(hsa.hsa_amd_profiling_async_copy_enable(1))
self.device_id = int(device.split(":")[1]) if ":" in device else 0
self.agent = HSADevice.agents[hsa.HSA_DEVICE_TYPE_GPU][self.device_id]
self.gpu_mempool = find_memory_pool(self.agent, segtyp=hsa.HSA_AMD_SEGMENT_GLOBAL, location=hsa.HSA_AMD_MEMORY_POOL_LOCATION_GPU)
self.hw_queue = AQLQueue(self)
HSADevice.devices.append(self)
check(hsa.hsa_agent_get_info(self.agent, hsa.HSA_AGENT_INFO_NAME, ctypes.byref(agent_name_buf := ctypes.create_string_buffer(256))))
self.arch = ctypes.string_at(agent_name_buf).decode()
check(hsa.hsa_system_get_info(hsa.HSA_SYSTEM_INFO_TIMESTAMP_FREQUENCY, ctypes.byref(gpu_freq := ctypes.c_uint64())))
self.clocks_to_time: float = 1 / gpu_freq.value
check(hsa.hsa_agent_get_info(self.agent, hsa.HSA_AMD_AGENT_INFO_HDP_FLUSH, ctypes.byref(hdp_flush := hsa.hsa_amd_hdp_flush_t())))
self.hdp_flush = hdp_flush
self.delayed_free: List[int] = []
self.reusable_signals: List[hsa.hsa_signal_t] = []
from tinygrad.runtime.graph.hsa import HSAGraph
super().__init__(device, HSAAllocator(self), HIPRenderer(), HSACompiler(self.arch), functools.partial(HSAProgram, self), HSAGraph)
# Finish init: preallocate some signals + space for kernargs
self.signal_pool = [init_c_var(hsa.hsa_signal_t(), lambda x: check(hsa.hsa_signal_create(1, 0, None, ctypes.byref(x)))) for _ in range(4096)]
self._new_kernargs_region(16 << 20) # initial region size is 16mb
def synchronize(self):
self.hw_queue.wait()
for sig in self.reusable_signals: hsa.hsa_signal_silent_store_relaxed(sig, 1)
self.signal_pool.extend(self.reusable_signals)
self.reusable_signals.clear()
for opaque_to_free in self.delayed_free: check(hsa.hsa_amd_memory_pool_free(opaque_to_free))
self.delayed_free.clear()
self.kernarg_next_addr = self.kernarg_start_addr
Profiler.process(self)
@staticmethod
def synchronize_system():
for d in HSADevice.devices: d.synchronize()
def alloc_signal(self, reusable=False):
if len(self.signal_pool): signal = self.signal_pool.pop()
else: check(hsa.hsa_amd_signal_create(1, 0, None, 0, ctypes.byref(signal := hsa.hsa_signal_t())))
# reusable means a signal could be reused after synchronize for the device it's allocated from is called.
if reusable: self.reusable_signals.append(signal)
return signal
def alloc_kernargs(self, sz):
if self.kernarg_next_addr + sz >= self.kernarg_start_addr + self.kernarg_pool_sz: self._new_kernargs_region(int(self.kernarg_pool_sz * 2))
result = self.kernarg_next_addr
self.kernarg_next_addr = round_up(self.kernarg_next_addr + sz, 16)
return result
def _new_kernargs_region(self, sz:int):
if hasattr(self, 'kernarg_start_addr'): self.delayed_free.append(self.kernarg_start_addr)
self.kernarg_start_addr: int = self.allocator._alloc(sz, BufferOptions())
self.kernarg_next_addr = self.kernarg_start_addr
self.kernarg_pool_sz: int = sz
def flush_hdp(self): self.hdp_flush.HDP_MEM_FLUSH_CNTL[0] = 1
def hsa_terminate():
# Need to stop/delete aql queue before hsa shut down, this leads to gpu hangs.
for dev in HSADevice.devices:
Profiler.process(dev)
del dev.hw_queue
# hsa_shut_down cleans up all hsa-related resources.
hsa.hsa_shut_down()
HSADevice.synchronize = lambda: None #type:ignore
HSAProgram.__del__ = lambda _: None #type:ignore
if Profiler.collected_events: Profiler.save("/tmp/profile.json")