-
Notifications
You must be signed in to change notification settings - Fork 3.1k
/
Copy pathtest_ops.py
1754 lines (1536 loc) · 92.6 KB
/
test_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import time, math, unittest
import numpy as np
import torch
from tinygrad.helpers import getenv, IMAGE, DEBUG, CI
from tinygrad import Tensor, Device, dtypes
if CI:
import warnings
warnings.filterwarnings("ignore", message="Non-empty compiler output encountered")
FORWARD_ONLY = getenv("FORWARD_ONLY", 0)
PRINT_TENSORS = getenv("PRINT_TENSORS", 0)
def helper_test_op(shps, torch_fxn, tinygrad_fxn=None, atol=1e-6, rtol=1e-3, grad_atol=1e-4, grad_rtol=1e-3,
forward_only=False, vals=None, low=-1.5, high=1.5):
if tinygrad_fxn is None: tinygrad_fxn = torch_fxn
ts, tst = prepare_test_op(low, high, shps, vals, forward_only)
st = time.monotonic()
out = torch_fxn(*ts)
torch_fp = time.monotonic() - st
# move inputs to a different device, test the device of intermediate tensors are correct
if mt:=getenv("MOVE_TENSOR", ""):
for t in tst: t.to_(mt)
st = time.monotonic()
ret = tinygrad_fxn(*tst).realize()
tinygrad_fp = time.monotonic() - st
def compare(s, tinygrad_output, torch_output, atol, rtol):
if PRINT_TENSORS: print(s, tinygrad_output, torch_output)
try:
assert tinygrad_output.shape == torch_output.shape, f"shape mismatch: tinygrad={tinygrad_output.shape} | torch={torch_output.shape}"
assert tinygrad_output.dtype == torch_output.dtype, f"dtype mismatch: tinygrad={tinygrad_output.dtype} | torch={torch_output.dtype}"
np.testing.assert_allclose(tinygrad_output, torch_output, atol=atol, rtol=rtol)
except Exception as e:
raise Exception(f"{s} failed shape {tinygrad_output.shape}: {e}")
if DEBUG >= 6:
np.set_printoptions(linewidth=200, suppress=True)
print(ret.numpy())
print(out.detach().numpy())
compare("forward pass", ret.numpy(), out.detach().numpy(), atol=atol, rtol=rtol)
torch_fbp, tinygrad_fbp = np.nan, np.nan
if not forward_only and not FORWARD_ONLY:
st = time.monotonic()
(out+1).square().mean().backward()
torch_fbp = time.monotonic() - st
st = time.monotonic()
(ret+1).square().mean().backward()
for tt in tst: tt.grad.realize()
tinygrad_fbp = time.monotonic() - st
for i, (t, tt) in enumerate(zip(ts, tst)):
compare(f"backward pass tensor {i}", tt.grad.numpy(), t.grad.detach().numpy(), atol=grad_atol, rtol=grad_rtol)
if not CI:
print("\ntesting %40r torch/tinygrad fp: %.2f / %.2f ms bp: %.2f / %.2f ms " % \
(shps, torch_fp*1000, tinygrad_fp*1000, torch_fbp*1000, tinygrad_fbp*1000), end="")
def prepare_test_op(low, high, shps, vals, forward_only=False):
if shps is None:
ts = [torch.tensor(x, requires_grad=(not forward_only)) for x in vals]
else:
np.random.seed(0)
np_data = [np.random.uniform(low=low, high=high, size=size).astype(dtypes.default_float.np) for size in shps]
ts = [torch.tensor(data, requires_grad=(not forward_only)) for data in np_data]
tst = [Tensor(x.detach().numpy(), requires_grad=(not forward_only and not FORWARD_ONLY)) for x in ts]
return ts, tst
class TestOps(unittest.TestCase):
def helper_test_exception(self, shps, torch_fxn, tinygrad_fxn, expected, exact=False, vals=None, low=-1.5, high=1.5):
if getenv("CUDACPU") or (getenv("MOCKGPU") and Device.DEFAULT == "NV"): self.skipTest('helper_test_exception fails in CUDACPU')
ts, tst = prepare_test_op(low, high, shps, vals)
with self.assertRaises(expected) as torch_cm:
torch_fxn(*ts)
with self.assertRaises(expected) as tinygrad_cm:
tinygrad_fxn(*tst)
if exact: self.assertEqual(str(torch_cm.exception), str(tinygrad_cm.exception))
if not CI: print("\ntesting %40r torch/tinygrad exception: %s / %s" % (shps, torch_cm.exception, tinygrad_cm.exception), end="")
def test_full_like(self):
a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.float32)
b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.float32)
helper_test_op([], lambda: torch.full_like(b, 4), lambda: Tensor.full_like(a, 4), forward_only=True)
a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.int32)
b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.int32)
helper_test_op([], lambda: torch.full_like(b, 4), lambda: Tensor.full_like(a, 4), forward_only=True)
def test_full(self):
helper_test_op([], lambda: torch.full((45,65), 4, dtype=torch.int32), lambda: Tensor.full((45,65), 4), forward_only=True)
def test_zeros(self):
helper_test_op([], lambda: torch.zeros(45,65), lambda: Tensor.zeros(45,65), forward_only=True)
helper_test_op([], lambda: torch.zeros([45,65]), lambda: Tensor.zeros([45,65]), forward_only=True)
helper_test_op([], lambda: torch.zeros([]), lambda: Tensor.zeros([]), forward_only=True)
def test_zeros_like(self):
a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.float32)
b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.float32)
helper_test_op([], lambda: torch.zeros_like(b), lambda: Tensor.zeros_like(a), forward_only=True)
a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.int32)
b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.int32)
helper_test_op([], lambda: torch.zeros_like(b), lambda: Tensor.zeros_like(a), forward_only=True)
def test_empty_0(self):
helper_test_op([], lambda: torch.empty(45,65)*0/0, lambda: Tensor.empty(45,65)*0/0, forward_only=True)
def test_ones(self):
helper_test_op([], lambda: torch.ones(45,65), lambda: Tensor.ones(45,65), forward_only=True)
helper_test_op([], lambda: torch.ones([45,65]), lambda: Tensor.ones([45,65]), forward_only=True)
helper_test_op([], lambda: torch.ones([]), lambda: Tensor.ones([]), forward_only=True)
def test_ones_like(self):
a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.float32)
b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.float32)
helper_test_op([], lambda: torch.ones_like(b), lambda: Tensor.ones_like(a), forward_only=True)
a = Tensor([[1,2,3],[4,5,6]], dtype=dtypes.int32)
b = torch.tensor([[1,2,3],[4,5,6]], dtype=torch.int32)
helper_test_op([], lambda: torch.ones_like(b), lambda: Tensor.ones_like(a), forward_only=True)
def test_eye(self):
helper_test_op([], lambda: torch.eye(10), lambda: Tensor.eye(10), forward_only=True)
helper_test_op([], lambda: torch.eye(1), lambda: Tensor.eye(1), forward_only=True)
helper_test_op([], lambda: torch.eye(0), lambda: Tensor.eye(0), forward_only=True)
def test_split(self):
def tensor(s): return torch.arange(math.prod(s), dtype=torch.int32).reshape(s), Tensor.arange(math.prod(s)).reshape(s)
test_cases = [
(tensor((10,)), 5, {}),
(tensor((10,)), [1,4,5], {}),
(tensor((10,)), 3, {}),
(tensor((3,4,)), 1, {}),
(tensor((3,4,)), 1, {'dim':1}),
(tensor((4,4,)), [2,2], {}),
(tensor((4,4,)), [2,2], {'dim':1}),
(tensor((10000,)), 2500, {}),
]
for (tor, ten), sizes, args in test_cases:
tor_splits, ten_splits = tor.split(sizes, **args), ten.split(sizes, **args)
assert len(tor_splits) == len(ten_splits)
for tor_chunk, ten_chunk in zip(tor_splits, ten_splits):
helper_test_op([], lambda: tor_chunk, lambda: ten_chunk, forward_only=True)
def test_chunk(self):
tor = torch.arange(13, dtype=torch.int32).repeat(8, 1).chunk(6, 1)
ten = Tensor.arange(13).repeat((8, 1)).chunk(6, 1)
assert len(tor) == len(ten)
for i in range(len(tor)):
helper_test_op([], lambda: tor[i], lambda: ten[i], forward_only=True)
tor = torch.arange(13, dtype=torch.int32).repeat(8, 1).chunk(6, 0)
ten = Tensor.arange(13).repeat((8, 1)).chunk(6, 0)
assert len(tor) == len(ten)
for i in range(len(tor)):
helper_test_op([], lambda: tor[i], lambda: ten[i], forward_only=True)
tor = torch.arange(13, dtype=torch.int32).repeat(8, 1).chunk(3, -1)
ten = Tensor.arange(13).repeat((8, 1)).chunk(3, -1)
assert len(tor) == len(ten)
for i in range(len(tor)):
helper_test_op([], lambda: tor[i], lambda: ten[i], forward_only=True)
tor = torch.arange(13, dtype=torch.int32).repeat(8, 3, 3).chunk(3, -2)
ten = Tensor.arange(13).repeat((8, 3, 3)).chunk(3, -2)
assert len(tor) == len(ten)
for i in range(len(tor)):
helper_test_op([], lambda: tor[i], lambda: ten[i], forward_only=True)
def test_arange(self):
helper_test_op([], lambda: torch.arange(10, dtype=torch.int32), lambda: Tensor.arange(10), forward_only=True)
helper_test_op([], lambda: torch.arange(36, dtype=torch.int32), lambda: Tensor.arange(36), forward_only=True)
helper_test_op([], lambda: torch.arange(5, 10, 3, dtype=torch.int32), lambda: Tensor.arange(5, 10, 3), forward_only=True)
helper_test_op([], lambda: torch.arange(10, 5, -3, dtype=torch.int32), lambda: Tensor.arange(10, 5, -3), forward_only=True)
helper_test_op([], lambda: torch.arange(11, 5, -3, dtype=torch.int32), lambda: Tensor.arange(11, 5, -3), forward_only=True)
helper_test_op([], lambda: torch.arange(1, 78, 2, dtype=torch.int32), lambda: Tensor.arange(1, 78, 2), forward_only=True)
helper_test_op([], lambda: torch.arange(5.5, 175.5, 2.5), lambda: Tensor.arange(5.5, 175.5, 2.5), forward_only=True)
helper_test_op([], lambda: torch.arange(-30.2, -0.3, 0.75), lambda: Tensor.arange(-30.2, -0.3, 0.75), forward_only=True)
helper_test_op([], lambda: torch.arange(-50.3, -380.2, -2.25), lambda: Tensor.arange(-50.3, -380.2, -2.25), forward_only=True)
def test_arange_big(self):
helper_test_op([], lambda: torch.arange(256, dtype=torch.int32), lambda: Tensor.arange(256), forward_only=True)
def test_sum_fake(self):
helper_test_op([(256, 1)], lambda x: x.sum(axis=1))
def test_sum_collapse(self):
helper_test_op([], lambda: torch.ones(256,256).sum(axis=1), lambda: Tensor.ones(256,256).sum(axis=1), forward_only=True)
def test_sum_collapse_neg(self):
helper_test_op([], lambda: (-torch.ones(3,3)).sum(axis=1), lambda: (-Tensor.ones(3,3)).sum(axis=1), forward_only=True)
def test_sum_pad_collapse(self):
helper_test_op([], lambda: torch.nn.functional.pad(torch.ones(256,256), pad=(0,64,0,0)).sum(axis=1),
lambda: Tensor.ones(256,256).pad(((0,0), (0,64))).sum(axis=1), forward_only=True)
# this is more complex and won't fold for a while
def test_sum_cat_collapse(self):
helper_test_op([], lambda: torch.cat([torch.ones(256,256), torch.zeros(256,64)], dim=1).sum(axis=1),
lambda: Tensor.cat(Tensor.ones(256,256), Tensor.zeros(256,64), dim=1).sum(axis=1), forward_only=True)
def test_max_dont_collapse(self):
helper_test_op([], lambda: torch.ones(256,256).max(1)[0], lambda: Tensor.ones(256,256).max(1), forward_only=True)
def test_where(self):
helper_test_op(
[(100,)],
lambda x: torch.where(x > 0.5, 4, 2).type(torch.int32),
lambda x: (x > 0.5).where(4, 2), forward_only=True)
for shps in [[(8,),(1,),(1,)], [(10,10),(10,),(10,)], [(100,)]*3, [(10,10)]*3]:
helper_test_op(
shps,
lambda x, a, b: torch.where(x > 0.5, a, b),
lambda x, a, b: (x > 0.5).where(a, b), forward_only=True)
def test_where_permute(self):
helper_test_op(
[(5, 5)],
lambda x: torch.where(x > 0.5, 4, 2).type(torch.int32).permute((1, 0)),
lambda x: (x > 0.5).where(4, 2).permute((1, 0)), forward_only=True)
def _test_cmp(self, fxn, reverse=True):
for shps in [[(3, 4, 5), (3, 4, 5)], [(3, 4, 5), (5,)], [(5,), (3, 4, 5)]]:
helper_test_op(shps, fxn, fxn, forward_only=True)
helper_test_op(None, fxn, fxn, forward_only=True, vals=[[0.,1,2], [2.,1,0]])
helper_test_op(None, lambda x,y: fxn(x,2), lambda x,y: fxn(x,2), forward_only=True, vals=[[0.,1,2], [2.,1,0]])
if Device.DEFAULT != "WEBGPU": # bool is not HOST_SHARABLE, so it cannot be used as a storage buffer type
helper_test_op(None, fxn, fxn, forward_only=True, vals=[[True, True, False], [False,True,False]])
if reverse: helper_test_op(None, lambda x,y: fxn(2,y), lambda x,y: fxn(2,y), forward_only=True, vals=[[0.,1,2], [2.,1,0]])
def test_cmp_eq(self): self._test_cmp(lambda x,y: x==y, reverse=False)
def test_cmp_gt(self): self._test_cmp(lambda x,y: x>y)
def test_cmp_ge(self): self._test_cmp(lambda x,y: x>=y)
def test_cmp_lt(self): self._test_cmp(lambda x,y: x<y)
def test_cmp_le(self): self._test_cmp(lambda x,y: x<=y)
def test_cmp_eq_backwards(self):
t1 = torch.ones(4, requires_grad=True)
t2 = torch.ones(4, requires_grad=True)
self.assertRaises(RuntimeError, (t1 == t2).sum().backward)
tt1 = Tensor.ones(4, requires_grad=True)
tt2 = Tensor.ones(4, requires_grad=True)
self.assertRaises(RuntimeError, (tt1 == tt2).sum().backward)
tt = Tensor.randn(4, requires_grad=True)
(tt*(tt == 0)).sum().backward()
t = torch.tensor(tt.numpy(), requires_grad=True)
(t*(t == 0)).sum().backward()
np.testing.assert_allclose(t.grad.numpy(), tt.grad.numpy(), rtol=1e-5)
def test_cmp_lt_backwards(self):
t1 = torch.ones(4, requires_grad=True)
t2 = torch.ones(4, requires_grad=True)
self.assertRaises(RuntimeError, (t1 < t2).sum().backward)
tt1 = Tensor.ones(4, requires_grad=True)
tt2 = Tensor.ones(4, requires_grad=True)
self.assertRaises(RuntimeError, (tt1 < tt2).sum().backward)
tt = Tensor.randn(4, requires_grad=True)
(tt*(tt < 0)).sum().backward()
t = torch.tensor(tt.numpy(), requires_grad=True)
(t*(t < 0)).sum().backward()
np.testing.assert_allclose(t.grad.numpy(), tt.grad.numpy(), rtol=1e-5)
def test_trunc(self):
helper_test_op([(45,35)], lambda x: x.trunc(), forward_only=True)
helper_test_op(None, lambda x: x.trunc(), vals=[[1.499, 1.5, 1.501, 1.0, 2.1, 0.0, -5.0, -2.499, -2.5, -2.501]], forward_only=True)
def test_floor(self):
helper_test_op([(45,35)], lambda x: x.floor(), forward_only=True)
helper_test_op(None, lambda x: x.floor(), vals=[[1.499, 1.5, 1.501, 1.0, 2.1, 0.0, -5.0, -2.499, -2.5, -2.501]], forward_only=True)
def test_ceil(self):
helper_test_op([(45,35)], lambda x: x.ceil(), forward_only=True)
helper_test_op(None, lambda x: x.ceil(), vals=[[1.499, 1.5, 1.501, 1.0, 2.1, 0.0, -5.0, -2.499, -2.5, -2.501]], forward_only=True)
def test_round(self):
helper_test_op([(45,35)], lambda x: x.round(), forward_only=True)
helper_test_op(None, lambda x: x.round(), vals=[[1.499, 1.5, 1.501, 1.0, 2.1, 0.0, -5.0, -2.499, -2.5, -2.501]], forward_only=True)
helper_test_op(None, lambda x: x.round(), vals=[[2.5, -1.5]], forward_only=True)
def test_lerp(self):
helper_test_op([(45,35), (45,35), (45,35)], lambda x,y,z: x.lerp(y,z))
helper_test_op(None, lambda x,y,z: x.lerp(y,z), vals=[[1.,2.,3.], [4.,5.,6.], 0.5])
def test_tril(self):
helper_test_op([(3,3)], lambda x: x.tril())
helper_test_op([(3,3)], lambda x: x.tril(1))
helper_test_op([(3,3)], lambda x: x.tril(-1))
helper_test_op([(5,3,3)], lambda x: x.tril())
helper_test_op([(5,0,3)], lambda x: x.tril())
helper_test_op([(5,3,3)], lambda x: x.tril(1))
def test_triu(self):
helper_test_op([(3,3)], lambda x: x.triu())
helper_test_op([(3,3)], lambda x: x.triu(1))
helper_test_op([(3,3)], lambda x: x.triu(-1))
helper_test_op([(5,3,3)], lambda x: x.triu())
helper_test_op([(5,0,3)], lambda x: x.triu())
helper_test_op([(5,3,3)], lambda x: x.triu(1))
def test_maximum(self):
helper_test_op([(45,65), (45,65)], torch.maximum, Tensor.maximum)
helper_test_op([(), ()], torch.maximum, Tensor.maximum)
helper_test_op(None, torch.maximum, Tensor.maximum, vals=[[1., 0., 3., -4.], 3.])
helper_test_op(None, torch.maximum, Tensor.maximum, vals=[[1., 0., 3., -4.], [-1., -2., 3., 0.]])
helper_test_op(None, torch.maximum, Tensor.maximum, vals=[[True, False, False], True], forward_only=True)
helper_test_op(None, torch.maximum, Tensor.maximum, vals=[[True, False, False], [True, True, False]], forward_only=True)
def test_minimum(self):
helper_test_op([(45,65), (45,65)], torch.minimum, Tensor.minimum)
helper_test_op([(), ()], torch.minimum, Tensor.minimum)
helper_test_op(None, torch.minimum, Tensor.minimum, vals=[[1., 0., 3., -4.], 3.])
helper_test_op(None, torch.minimum, Tensor.minimum, vals=[[1., 0., 3., -4.], [-1., -2., 3., 0.]])
helper_test_op(None, torch.minimum, Tensor.minimum, vals=[[True, False, False], True], forward_only=True)
helper_test_op(None, torch.minimum, Tensor.minimum, vals=[[True, False, False], [True, True, False]], forward_only=True)
def test_tiny_add(self):
helper_test_op([(3), (3)], lambda x,y: x+y, Tensor.add, forward_only=True)
def test_add(self):
helper_test_op([(45,68), (45,68)], lambda x,y: x+y, Tensor.add)
helper_test_op([(45,68), (45,68)], lambda x,y: x+y)
helper_test_op([(), ()], lambda x,y: x+y)
def test_add3(self):
helper_test_op([(45,65), (45,65), (45,65)], lambda x,y,z: x+y+z)
def test_broadcasted_add(self):
helper_test_op([(45,65), (45,1)], lambda x,y: x+y)
helper_test_op([(45,65), ()], lambda x,y: x+y)
def test_broadcasted_add_2(self):
helper_test_op([(45,65), (65,)], lambda x,y: x+y)
def test_sub(self):
helper_test_op([(45,65), (45,65)], lambda x,y: x-y, Tensor.sub)
helper_test_op([(45,65), (45,65)], lambda x,y: x-y)
helper_test_op([(), ()], lambda x,y: x-y)
def test_scalar_sub(self):
helper_test_op([(45,65)], lambda x: x-2)
helper_test_op([()], lambda x: x-2)
def test_scalar_rsub(self):
helper_test_op([(45,65)], lambda x: 2-x)
helper_test_op([()], lambda x: 2-x)
def test_neg(self):
helper_test_op([(45,65)], lambda x: -x)
helper_test_op([(45,65)], lambda x: x.neg())
helper_test_op([()], lambda x: x.neg())
def test_logical_not(self):
helper_test_op(None, torch.logical_not, Tensor.logical_not, vals=[[True, False, True]], forward_only=True)
helper_test_op(None, torch.logical_not, Tensor.logical_not, vals=[[1.,2.,0.,0.5]], forward_only=True)
def test_mul(self):
helper_test_op([(64,64), (64,64)], lambda x,y: x*y, Tensor.mul)
helper_test_op([(64,64), (64,64)], lambda x,y: x*y)
helper_test_op([(), ()], lambda x,y: x*y)
def test_scalar_mul(self):
helper_test_op([(45,65)], lambda x: x*2)
helper_test_op([(45,65)], lambda x: x*-1)
helper_test_op([(45,65)], lambda x: 255*x)
helper_test_op([(45,65)], lambda x: 2*x)
helper_test_op([()], lambda x: x*2)
helper_test_op([()], lambda x: 2*x)
def test_div(self):
helper_test_op([(45,65), (45,65)], lambda x,y: x/y, Tensor.div)
helper_test_op([(45,65), (45,65)], lambda x,y: x/y)
helper_test_op([(), ()], lambda x,y: x/y)
def test_div_int(self):
helper_test_op(None, lambda x,y: x/y, Tensor.div, forward_only=True, vals=np.array([[5, 6, 7],[1, 2, 3]], dtype=np.int32))
helper_test_op(None, lambda x: x/2, lambda x: x/2, forward_only=True, vals=np.array([[3, 4, 5]], dtype=np.int32))
def test_scalar_div(self):
helper_test_op([(45,65)], lambda x: x/255)
helper_test_op([(45,65)], lambda x: x/1)
helper_test_op([(45,65)], lambda x: 1/x)
helper_test_op([(45,65)], lambda x: x/2)
helper_test_op([(45,65)], lambda x: 2/x)
helper_test_op([()], lambda x: x/2)
helper_test_op([()], lambda x: 2/x)
def test_mul_naninf(self):
helper_test_op([(45,65)], lambda x: x*math.inf)
helper_test_op([(45,65)], lambda x: x*-math.inf)
helper_test_op([(45,65)], lambda x: x*math.nan)
def test_div_naninf(self):
helper_test_op([(45,65)], lambda x: x/math.inf)
helper_test_op([(45,65)], lambda x: x/-math.inf)
helper_test_op([(45,65)], lambda x: x/math.nan)
helper_test_op([(45,65)], lambda x: math.inf/x)
helper_test_op([(45,65)], lambda x: (-math.inf)/x)
helper_test_op([(45,65)], lambda x: math.nan/x)
def test_pow_full(self):
helper_test_op([(45,65), (45,65)], lambda x,y: x**y)
helper_test_op([(45,65), (45,65)], lambda x,y: x.pow(y))
def test_pow(self):
helper_test_op([(45,65)], lambda x: x**0)
helper_test_op([(45,65)], lambda x: x**1)
helper_test_op([(45,65)], lambda x: x**2)
helper_test_op([(45,65)], lambda x: x**3)
helper_test_op([(45,65)], lambda x: x**-2)
helper_test_op([()], lambda x: x**2)
helper_test_op([()], lambda x: x**-2)
# Regression tests for https://github.com/tinygrad/tinygrad/issues/1151
helper_test_op([(45,65)], lambda x: x**3, low=-30, high=-27)
helper_test_op([()], lambda x: x**3, low=-30, high=-27)
# Regression tests for https://github.com/tinygrad/tinygrad/issues/1251
helper_test_op([(45,65)], lambda x: x**0.2, low=-30, high=-27)
helper_test_op([(45,65)], lambda x: x**1.2, low=-30, high=-27)
helper_test_op([()], lambda x: x**0.2, low=-30, high=-27)
helper_test_op([()], lambda x: x**1.2, low=-30, high=-27)
a, b = Tensor([0.0], requires_grad=True), torch.tensor([0.0], requires_grad=True)
helper_test_op([], lambda: b**1.1, lambda: a**1.1)
def test_pow_const(self):
helper_test_op([(45,65)], lambda x: x**1.0)
helper_test_op([(45,65)], lambda x: x**-1.0)
helper_test_op([(45,65)], lambda x: 1.0**x)
helper_test_op([(45,65)], lambda x: x**2.0)
helper_test_op([(45,65)], lambda x: 2.0**x)
helper_test_op([()], lambda x: x**2.0)
helper_test_op([()], lambda x: 2.0**x)
# TODO: fix backward
helper_test_op(None, lambda x: 0**x, vals=[[-2.,-1,0,1,2,3]], forward_only=True)
# TODO: fix backward, should be nan
helper_test_op(None, lambda x: (-2)**x, vals=[[-2.,-1,0,1,2,3]], forward_only=True)
def test_sqrt(self):
helper_test_op([(45,65)], lambda x: x.sqrt())
helper_test_op([()], lambda x: x.sqrt())
def test_rsqrt(self):
helper_test_op([(45,65)], lambda x: x.rsqrt())
helper_test_op([()], lambda x: x.rsqrt())
def test_xor(self):
tor = torch.tensor([[1,-8,1],[32,1,6]], dtype=torch.int)
ten = Tensor([[1,-8,1],[32,1,6]], dtype=dtypes.int32)
helper_test_op([], lambda: tor^tor, lambda: ten^ten, forward_only=True)
helper_test_op([], lambda: tor^0x1337, lambda: ten^0x1337, forward_only=True)
helper_test_op([], lambda: 0x1337^tor, lambda: 0x1337^ten, forward_only=True)
def test_lshift(self):
data = [[0,1,2],[1<<8,1<<16,1<<31-1]]
tor = torch.tensor(data, dtype=torch.int)
ten = Tensor(data, dtype=dtypes.uint32)
# cast to int32 because torch does not support uint32
helper_test_op([], lambda: tor << 0, lambda: (ten << 0).cast(dtypes.int32), forward_only=True)
helper_test_op([], lambda: tor << 2, lambda: (ten << 2).cast(dtypes.int32), forward_only=True)
helper_test_op([], lambda: tor << 31, lambda: (ten << 31).cast(dtypes.int32), forward_only=True)
helper_test_op([], lambda: tor.__lshift__(2), lambda: ten.__lshift__(2).cast(dtypes.int32), forward_only=True)
helper_test_op([], lambda: tor.bitwise_left_shift(2), lambda: ten.lshift(2).cast(dtypes.int32), forward_only=True)
def test_rshift(self):
data = [[0,1,2],[1<<8,1<<16,1<<31-1]]
tor = torch.tensor(data, dtype=torch.int)
ten = Tensor(data, dtype=dtypes.uint32)
# cast to int32 because torch does not support uint32
helper_test_op([], lambda: tor >> 0, lambda: (ten >> 0).cast(dtypes.int32), forward_only=True)
helper_test_op([], lambda: tor >> 2, lambda: (ten >> 2).cast(dtypes.int32), forward_only=True)
helper_test_op([], lambda: tor >> 31, lambda: (ten >> 31).cast(dtypes.int32), forward_only=True)
helper_test_op([], lambda: tor.__rshift__(2), lambda: ten.__rshift__(2).cast(dtypes.int32), forward_only=True)
helper_test_op([], lambda: tor.bitwise_right_shift(2), lambda: ten.rshift(2).cast(dtypes.int32), forward_only=True)
def test_sin(self):
helper_test_op([(45,65)], lambda x: x.sin())
helper_test_op([()], lambda x: x.sin())
def test_cos(self):
helper_test_op([(45,65)], lambda x: x.cos())
helper_test_op([()], lambda x: x.cos())
def test_tan(self):
helper_test_op([(45,65)], lambda x: x.tan())
helper_test_op([()], lambda x: x.tan())
def test_relu(self):
helper_test_op([(64,64)], lambda x: x.relu())
helper_test_op([()], lambda x: x.relu())
def test_relu_exact(self):
helper_test_op(None, lambda x: x.relu(), vals=[[-1.,0,1]])
def test_relu_maximum_exact(self):
helper_test_op(None, lambda x: torch.maximum(x, torch.zeros_like(x, requires_grad=False)), lambda x: Tensor.maximum(x, 0), vals=[[-1.,0,1]])
def test_leakyrelu(self):
helper_test_op([(45,65)], lambda x: torch.nn.functional.leaky_relu(x,0.01), Tensor.leakyrelu)
helper_test_op([()], lambda x: torch.nn.functional.leaky_relu(x,0.01), Tensor.leakyrelu)
def test_celu(self):
for val in range(1, 5):
helper_test_op([(45,65)], lambda x: torch.nn.functional.celu(x,val), lambda x: x.celu(val))
helper_test_op([()], lambda x: torch.nn.functional.celu(x,val), lambda x: x.celu(val))
def test_abs(self):
helper_test_op([(45,65)], torch.abs, Tensor.abs)
helper_test_op([()], torch.abs, Tensor.abs)
def test_abs_exact(self):
helper_test_op(None, torch.abs, Tensor.abs, vals=[[-1.,0,1]])
def test_log(self):
helper_test_op([(45,65)], torch.log, Tensor.log)
helper_test_op([()], torch.log, Tensor.log)
def test_log2(self):
helper_test_op([(45,65)], torch.log2, Tensor.log2)
helper_test_op([()], torch.log2, Tensor.log2)
def test_exp(self):
helper_test_op([(45,65)], torch.exp, Tensor.exp)
helper_test_op([()], torch.exp, Tensor.exp)
def test_exp2(self):
helper_test_op([(45,65)], torch.exp2, Tensor.exp2)
helper_test_op([()], torch.exp2, Tensor.exp2)
def test_sign(self):
helper_test_op([(45,65)], torch.sign, Tensor.sign)
helper_test_op([()], torch.sign, Tensor.sign)
def test_sign_exact(self):
helper_test_op(None, torch.sign, Tensor.sign, vals=[[-1.,0,1]])
def test_softsign(self):
helper_test_op([(45,65)], torch.nn.functional.softsign, Tensor.softsign)
helper_test_op([()], torch.nn.functional.softsign, Tensor.softsign)
def test_softsign_exact(self):
helper_test_op(None, torch.nn.functional.softsign, Tensor.softsign, vals=[[-1.,0,1]])
def test_sigmoid(self):
helper_test_op([(45,65)], torch.sigmoid, Tensor.sigmoid)
helper_test_op([(45,65)], torch.sigmoid, Tensor.sigmoid, low=300, high=303)
helper_test_op([(45,65)], torch.sigmoid, Tensor.sigmoid, low=-300, high=-297)
helper_test_op([()], torch.sigmoid, Tensor.sigmoid)
def test_softplus(self):
helper_test_op([(45,65)], torch.nn.functional.softplus, Tensor.softplus, grad_atol=1e-6)
helper_test_op([()], torch.nn.functional.softplus, Tensor.softplus, grad_atol=1e-6)
def test_gelu(self):
helper_test_op([(45,65)], lambda x: torch.nn.functional.gelu(x, approximate="tanh"), Tensor.gelu)
helper_test_op([(45,65)], lambda x: torch.nn.functional.gelu(x, approximate="tanh"), Tensor.gelu, low=300, high=303)
helper_test_op([(45,65)], lambda x: torch.nn.functional.gelu(x, approximate="tanh"), Tensor.gelu, low=-300, high=-297)
def test_quick_gelu(self):
helper_test_op([(45,65)], lambda x: x * torch.sigmoid(1.702 * x), Tensor.quick_gelu)
helper_test_op([(45,65)], lambda x: x * torch.sigmoid(1.702 * x), Tensor.quick_gelu, low=300, high=303)
helper_test_op([(45,65)], lambda x: x * torch.sigmoid(1.702 * x), Tensor.quick_gelu, low=-300, high=-297)
helper_test_op([()], lambda x: x * torch.sigmoid(1.702 * x), Tensor.quick_gelu)
def test_elu(self):
helper_test_op([(45,65)], torch.nn.functional.elu, Tensor.elu)
helper_test_op([(45,65)], lambda x: torch.nn.functional.elu(x, alpha=0.1), lambda x: Tensor.elu(x, alpha=0.1))
helper_test_op([()], torch.nn.functional.elu, Tensor.elu)
def test_relu6(self):
helper_test_op([(45,65)], torch.nn.functional.relu6, Tensor.relu6)
helper_test_op([()], torch.nn.functional.relu6, Tensor.relu6)
def test_hardswish(self):
helper_test_op([(45,65)], torch.nn.functional.hardswish, Tensor.hardswish, grad_atol=1e-6)
helper_test_op([()], torch.nn.functional.hardswish, Tensor.hardswish, grad_atol=1e-6)
def test_mish(self):
helper_test_op([(45,65)], torch.nn.functional.mish, Tensor.mish)
helper_test_op([()], torch.nn.functional.mish, Tensor.mish)
def test_multinomial(self):
# NOTE: this is random, so it has a very large atol
helper_test_op([(1000,)], lambda x: torch.multinomial(x.clip(0,1), num_samples=1).type(torch.int32),
lambda x: Tensor.multinomial(x.clip(0,1)), forward_only=True, atol=1000.)
def test_small_cumsum(self):
helper_test_op([(10)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0))
def test_simple_cumsum(self):
helper_test_op([(512)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0))
helper_test_op([(1022)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0))
def test_cumsum(self):
helper_test_op([(20)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0))
helper_test_op([(20,30)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0))
helper_test_op([(20,30)], lambda x: torch.cumsum(x, dim=1), lambda x: Tensor.cumsum(x, axis=1))
helper_test_op([(20,30,40)], lambda x: torch.cumsum(x, dim=2), lambda x: Tensor.cumsum(x, axis=2))
helper_test_op([(20,30,40)], lambda x: torch.cumsum(x, dim=-1), lambda x: Tensor.cumsum(x, axis=-1))
def test_cumsum_zero_axis(self):
helper_test_op([(2,0,4)], lambda x: torch.cumsum(x, dim=1), lambda x: Tensor.cumsum(x, axis=1))
helper_test_op([(0,3)], lambda x: torch.cumsum(x, dim=0), lambda x: Tensor.cumsum(x, axis=0))
helper_test_op([(2,3,0)], lambda x: torch.cumsum(x, dim=2), lambda x: Tensor.cumsum(x, axis=2))
def test_argmax(self):
# check if it returns the first index for multiple occurences
self.assertEqual(torch.tensor([2,2]).argmax().numpy(), Tensor([2,2]).argmax().numpy())
np.testing.assert_equal(Tensor([2,2]).argmax().numpy(), np.array(0))
np.testing.assert_equal(Tensor([1,2,2]).argmax().numpy(), np.array(1))
helper_test_op([(10,20)], lambda x: x.argmax().type(torch.int32), lambda x: x.argmax(), forward_only=True)
helper_test_op([(10,20)], lambda x: x.argmax(0, False).type(torch.int32), lambda x: x.argmax(0, False), forward_only=True)
helper_test_op([(10,20)], lambda x: x.argmax(1, False).type(torch.int32), lambda x: x.argmax(1, False), forward_only=True)
helper_test_op([(10,20)], lambda x: x.argmax(1, True).type(torch.int32), lambda x: x.argmax(1, True), forward_only=True)
def test_argmin(self):
# check if it returns the first index for multiple occurences
self.assertEqual(torch.tensor([2, 2]).argmin().numpy(), Tensor([2, 2]).argmin().numpy())
np.testing.assert_equal(Tensor([2,2]).argmin().numpy(), np.array(0))
np.testing.assert_equal(Tensor([3,2,2]).argmin().numpy(), np.array(1))
helper_test_op([(10,20)], lambda x: x.argmin().type(torch.int32), lambda x: x.argmin(), forward_only=True)
helper_test_op([(10,20)], lambda x: x.argmin(0, False).type(torch.int32), lambda x: x.argmin(0, False), forward_only=True)
helper_test_op([(10,20)], lambda x: x.argmin(1, False).type(torch.int32), lambda x: x.argmin(1, False), forward_only=True)
helper_test_op([(10,20)], lambda x: x.argmin(1, True).type(torch.int32), lambda x: x.argmin(1, True), forward_only=True)
def test_einsum(self):
# matrix transpose
helper_test_op([(150,150)], lambda a: torch.einsum('ij->ji', a), lambda a: Tensor.einsum('ij->ji', a))
helper_test_op([(150,150)], lambda a: torch.einsum('ij -> ji', a), lambda a: Tensor.einsum('ij -> ji', a))
helper_test_op([(150,150)], lambda a: torch.einsum('ji', a), lambda a: Tensor.einsum('ji', a))
helper_test_op([(20,30,40)], lambda a: torch.einsum('jki', a), lambda a: Tensor.einsum('jki', a))
helper_test_op([(20,30,40)], lambda a: torch.einsum('dog', a), lambda a: Tensor.einsum('dog', a))
# sum all elements
helper_test_op([(20,30,40)], lambda a: torch.einsum('ijk->', a), lambda a: Tensor.einsum('ijk->', a))
# column sum
helper_test_op([(50,50)], lambda a: torch.einsum('ij->j', a), lambda a: Tensor.einsum('ij->j', a))
# row sum
helper_test_op([(15,15)], lambda a: torch.einsum('ij->i', a), lambda a: Tensor.einsum('ij->i', a))
# matrix-vector multiplication
helper_test_op([(15,20), (20,)], lambda a,b: torch.einsum('ik,k->i', a,b), lambda a,b: Tensor.einsum('ik,k->i', a, b))
# matrix-matrix multiplication
helper_test_op([(15,20), (20,30)], lambda a,b: torch.einsum('ik,kj->ij', a,b), lambda a,b: Tensor.einsum('ik,kj->ij', a, b))
# matrix-matrix multiplication, different letter order
helper_test_op([(15,20), (20,30)], lambda a,b: torch.einsum('jk,ki->ji', a,b), lambda a,b: Tensor.einsum('jk,ki->ji', a, b))
# dot product
helper_test_op([(30),(30)], lambda a,b: torch.einsum('i,i->i', [a,b]), lambda a,b: Tensor.einsum('i,i->i', [a,b]))
# hadamard product
helper_test_op([(30,40),(30,40)], lambda a,b: torch.einsum('ij,ij->ij', a,b), lambda a,b: Tensor.einsum('ij,ij->ij', a,b))
# outer product
helper_test_op([(15,), (15,)], lambda a,b: torch.einsum('i,j->ij', a,b), lambda a,b: Tensor.einsum('i,j->ij',a,b))
# batch matrix multiplication
helper_test_op([(10,20,30),(10,30,40)], lambda a,b: torch.einsum('ijk,ikl->ijl', [a, b]), lambda a,b: Tensor.einsum('ijk,ikl->ijl', [a, b]))
# batch matrix multiplication, result permuted
helper_test_op([(10,20,25),(10,25,32)], lambda a,b: torch.einsum('ijk,ikl->jil', [a, b]), lambda a,b: Tensor.einsum('ijk,ikl->jil', [a, b]))
# batch matrix multiplication, result & input permuted
helper_test_op([(20,10,25),(10,25,32)], lambda a,b: torch.einsum('jik,ikl->jil', [a, b]), lambda a,b: Tensor.einsum('jik,ikl->jil', [a, b]))
# batch matrix multiplication, result with different letters
helper_test_op([(10,20,30),(10,30,40)], lambda a,b: torch.einsum('ijk,ika->ija', [a, b]), lambda a,b: Tensor.einsum('ijk,ika->ija', [a, b]))
# tensor contraction
helper_test_op([(3,5,8,10),(11,13,5,16,8)], lambda a,b: torch.einsum('pqrs,tuqvr->pstuv', a,b),
lambda a,b: Tensor.einsum('pqrs,tuqvr->pstuv', a,b), atol=1e-5)
# tensor contraction, input permuted
helper_test_op([(3,8,10,5),(11,5,13,16,8)], lambda a,b: torch.einsum('prsq,tquvr->pstuv', a,b),
lambda a,b: Tensor.einsum('prsq,tquvr->pstuv', a,b), atol=1e-5)
# tensor contraction, result with different letters
helper_test_op([(3,5,8,10),(11,13,5,16,8)], lambda a,b: torch.einsum('zqrs,tuqvr->zstuv', a,b),
lambda a,b: Tensor.einsum('zqrs,tuqvr->zstuv', a,b), atol=1e-5)
# bilinear transformation
helper_test_op([(2,3),(5,3,7),(2,7)], lambda a,b,c: torch.einsum('ik,jkl,il->ij', [a,b,c]), lambda a,b,c: Tensor.einsum('ik,jkl,il->ij', [a,b,c]))
def test_einsum_shape_check(self):
a = Tensor.zeros(3,8,10,5)
b = Tensor.zeros(11,5,13,16,8)
with self.assertRaises(AssertionError):
Tensor.einsum('pqrs,tuqvr->pstuv',a,b)
def test_einsum_arity_check1(self):
a = Tensor.zeros(10,15)
b = Tensor.zeros(15,20)
c = Tensor.zeros(20,10)
with self.assertRaises(AssertionError):
Tensor.einsum('ij,jk->ij', a,b,c)
def test_einsum_arity_check2(self):
a = Tensor.zeros(10,10)
with self.assertRaises(AssertionError):
Tensor.einsum('ij,jk->ij', a)
@unittest.skipIf(IMAGE>0, "no 1d dot for images")
def test_dot_1d(self):
helper_test_op([(65), (65)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
helper_test_op([(65), (65,45)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
helper_test_op([(45,65), (65)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
helper_test_op([(8,45,65), (65)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
helper_test_op([(65), (8,65,45)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
self.helper_test_exception([(4), (1,2)], lambda x, y: x.matmul(y), Tensor.dot, expected=(RuntimeError, AssertionError))
self.helper_test_exception([(2,1), (4)], lambda x, y: x.matmul(y), Tensor.dot, expected=(RuntimeError, AssertionError))
self.helper_test_exception([(1), (4)], lambda x, y: x.matmul(y), Tensor.dot, expected=(RuntimeError, AssertionError))
def test_dot(self):
helper_test_op([(45,65), (65,100)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
helper_test_op([(8,45,65), (8,65,100)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
self.helper_test_exception([(2, 4), (1, 3)], lambda x, y: x.matmul(y), Tensor.dot, expected=(RuntimeError, AssertionError))
self.helper_test_exception([(2, 1), (4, 3)], lambda x, y: x.matmul(y), Tensor.dot, expected=(RuntimeError, AssertionError))
with self.assertRaises(AssertionError):
a = Tensor(3.14)
a.matmul(a)
def test_mulacc_with_zero_strides(self):
helper_test_op(
[],
lambda: torch.tensor(1.0).reshape((1,1,1)).expand(2,4,3).mul(torch.tensor(1.0).reshape((1,1,1)).expand(2,4,3)).sum(-1),
lambda: Tensor(1.0).reshape((1,1,1)).expand(2,4,3).mul(Tensor(1.0).reshape((1,1,1)).expand(2,4,3)).sum(-1),
forward_only=True
)
a = [[1.,1.,1.,1.], [1.,1.,1.,1.]]
b = [1.,1.,1.,1.]
helper_test_op(
[],
lambda: torch.tensor(a).reshape((2,4,1)).expand(2,4,3).mul(torch.tensor(b).reshape((1,4,1)).expand(2,4,3)).sum([0,2]),
lambda: Tensor(a).reshape((2,4,1)).expand(2,4,3).mul(Tensor(b).reshape((1,4,1)).expand(2,4,3)).sum([0,2]),
forward_only=True
)
helper_test_op(
[],
lambda: torch.ones((1,2)).matmul(torch.ones((2,3))), lambda: Tensor.ones((1,2)).dot(Tensor.ones((2,3))),
forward_only=True
)
def test_matmul_simple(self):
helper_test_op([(4), (4,4)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
def test_matmul(self):
helper_test_op([(64), (64,99)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
@unittest.skipIf(IMAGE>0, "no batched matmul on images")
def test_matmul_batched(self):
helper_test_op([(3), (1,3,3,5)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
@unittest.skipIf(IMAGE>0, "no batched matmul on images")
def test_matmul_batched_vector(self):
helper_test_op([(4,3), (1,3,3,5)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-4)
def test_small_gemm(self):
helper_test_op([(8,8), (8,8)], lambda x,y: x.matmul(y), lambda x,y: x@y, atol=1e-3)
def test_small_gemm_range(self):
helper_test_op(None, lambda x,y: x.matmul(y), lambda x,y: x@y, atol=1e-3, vals=[np.arange(0,64,dtype=np.float32).reshape(8,8),
np.arange(64,128,dtype=np.float32).reshape(8,8)])
def test_small_gemm_eye(self):
helper_test_op(None, lambda x,y: x.matmul(y), lambda x,y: x@y, atol=1e-3, vals=[np.eye(8).astype(np.float32), np.eye(8).astype(np.float32)])
def test_gemm(self):
helper_test_op([(64,64), (64,64)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-3)
def test_big_gemm(self):
helper_test_op([(256,256), (256,256)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-3)
@unittest.skipIf(IMAGE>0, "no 0 in shape matmul on images")
def test_gemm_with_zeros_shape(self):
helper_test_op([(8,8), (8,0)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7)
helper_test_op([(0,8), (8,8)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7)
helper_test_op([(0,8), (8,0)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7)
helper_test_op([(8,0), (0,8)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7)
helper_test_op([(0,0), (0,0)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7)
helper_test_op([(0), (0,8)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7)
helper_test_op([(0), (0)], lambda x,y: x.matmul(y), Tensor.dot, atol=1e-7)
def test_broadcastdot(self):
helper_test_op([(10,45,65), (65,45)], lambda x,y: x @ y, Tensor.dot, atol=1e-4)
with self.assertRaises(AssertionError):
a = Tensor(3.14)
b = Tensor.ones(3,3)
a @ b
def test_multidot(self):
helper_test_op([(10,45,65), (10,65,45)], lambda x,y: x @ y, Tensor.dot, atol=1e-4)
helper_test_op([(3,3,45,65), (3,3,65,45)], lambda x,y: x @ y, Tensor.dot, atol=1e-4)
def test_sum_simple(self):
helper_test_op(None, lambda x: x.sum(), vals=[[1.,1.]])
def test_sum_full(self):
helper_test_op([(16384)], lambda x: x.sum())
def test_sum_relu(self):
helper_test_op([(3,4,5)], lambda x: x.relu().sum().relu())
def test_sum_tiny(self):
helper_test_op([(4,2,2)], lambda x: x.sum(axis=(0,2)))
def test_sum(self):
helper_test_op([(45,3)], lambda x: x.sum())
helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=3))
helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=(1,3)))
helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=(0,2)))
helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=(1,2)))
helper_test_op([(3,4,5,6)], lambda x: x.sum(axis=1))
helper_test_op([()], lambda x: x.sum(), Tensor.sum)
def test_sum_with_zeros_shape(self):
helper_test_op([(4, 0)], lambda x: x.sum(axis=(0,)))
helper_test_op([(4, 0)], lambda x: x.sum(axis=(1,)))
helper_test_op([(4, 0)], lambda x: x.sum(axis=(0,1)))
def test_min(self):
helper_test_op([(3,3)], lambda x: x.min())
helper_test_op([(45,3)], lambda x: x.min())
helper_test_op([(45,3)], lambda x: x.min().mul(0.5))
helper_test_op([()], lambda x: x.min())
def test_max(self):
helper_test_op([(45,3)], lambda x: x.max())
helper_test_op([(45,3)], lambda x: x.max().mul(0.5))
helper_test_op(None, lambda x: x.max().mul(0.5), vals=[[[1.0,1.0,0.0,1.0]],])
helper_test_op([(3,4,5,6)], lambda x: x.max(axis=1)[0], lambda x: x.max(axis=1))
helper_test_op([()], lambda x: x.max())
def test_mean(self):
helper_test_op([(3,4,5,6)], lambda x: x.mean())
helper_test_op([()], lambda x: x.mean())
def test_mean_axis(self):
helper_test_op([(3,4,5,6)], lambda x: x.mean(axis=(1,2)))
def test_mean_zero_axis(self):
helper_test_op([(1,0,3,0,5)], lambda x: x.mean(axis=(1,3)))
def test_var(self):
helper_test_op([(15, 25, 35)], lambda x: x.var())
helper_test_op([(15, 25, 35)], lambda x: x.var(correction=0))
helper_test_op([(15, 25, 35)], lambda x: x.var(correction=5))
# TODO: fix this
# helper_test_op([(10, 2)], lambda x: x.var(correction=50))
def test_var_axis(self):
helper_test_op([(15, 25, 35)], lambda x: x.var(0))
helper_test_op([(15, 25, 35)], lambda x: x.var(2))
helper_test_op([(15, 25, 35)], lambda x: x.var([1, 2]))
helper_test_op([(15, 25, 35)], lambda x: x.var(0, correction=0))
helper_test_op([(15, 25, 35)], lambda x: x.var(2, correction=0))
helper_test_op([(15, 25, 35)], lambda x: x.var([1, 2], correction=0))
def test_var_zero_axis(self):
helper_test_op([(1,0,3,0,5)], lambda x: x.var(axis=(1,3)))
helper_test_op([(1,0,3,0,5)], lambda x: x.var(axis=(1,3), correction=0))
helper_test_op([(1,0,3,0,5)], lambda x: x.var(axis=(1,3), correction=5))
def test_var_keepdim(self):
helper_test_op([(15, 25, 35)], lambda x: x.var(keepdim=True))
helper_test_op([(15, 25, 35)], lambda x: x.var(0, keepdim=True, correction=0))
def test_std(self):
helper_test_op([(15, 25, 35)], lambda x: x.std())
helper_test_op([(15, 25, 35)], lambda x: x.std(correction=0))
helper_test_op([(15, 25, 35)], lambda x: x.std(correction=5))
def test_std_axis(self):
helper_test_op([(15, 25, 35)], lambda x: x.std(0))
helper_test_op([(15, 25, 35)], lambda x: x.std(2))
helper_test_op([(15, 25, 35)], lambda x: x.std([1, 2]))
helper_test_op([(15, 25, 35)], lambda x: x.std(0, correction=0))
helper_test_op([(15, 25, 35)], lambda x: x.std(2, correction=0))
helper_test_op([(15, 25, 35)], lambda x: x.std([1, 2], correction=0))
def test_std_zero_axis(self):
helper_test_op([(1,0,3,0,5)], lambda x: x.std(axis=(1,3)))
helper_test_op([(1,0,3,0,5)], lambda x: x.std(axis=(1,3), correction=0))
helper_test_op([(1,0,3,0,5)], lambda x: x.std(axis=(1,3), correction=5))
def test_std_keepdim(self):
helper_test_op([(15, 25, 35)], lambda x: x.std(keepdim=True))
helper_test_op([(15, 25, 35)], lambda x: x.std(0, keepdim=True, correction=0))
def test_softmax(self):
# exceed per kernel buffer limit with backward
forward_only = (Device.DEFAULT == "WEBGPU")
helper_test_op([(45,65)], torch.nn.Softmax(dim=1), Tensor.softmax, atol=1e-7, grad_atol=1e-7, forward_only=forward_only)
helper_test_op([(45)], torch.nn.Softmax(dim=0), Tensor.softmax, atol=1e-7, grad_atol=1e-7, forward_only=forward_only)
helper_test_op([()], torch.nn.Softmax(dim=0), Tensor.softmax, atol=1e-7, grad_atol=1e-7, forward_only=forward_only)
helper_test_op([()], torch.nn.Softmax(dim=-1), Tensor.softmax, atol=1e-7, grad_atol=1e-7, forward_only=forward_only)
def test_softmax_other_axis(self):
helper_test_op([(10,10,10)], lambda x: x.softmax(0), atol=1e-7, grad_atol=1e-7)
helper_test_op([(10,10,10)], lambda x: x.softmax(1), atol=1e-7, grad_atol=1e-7)
helper_test_op([(10,10,10)], lambda x: x.softmax(2), atol=1e-7, grad_atol=1e-7)
def test_softmax_argmax(self):
helper_test_op([(45,65)], lambda x: x.softmax(0).argmax().type(torch.int32),
lambda x: x.softmax(0).argmax(), forward_only=True, atol=1e-7, grad_atol=1e-7)
helper_test_op([(45,65)], lambda x: x.softmax(1).argmax().type(torch.int32),
lambda x: x.softmax(1).argmax(), forward_only=True, atol=1e-7, grad_atol=1e-7)
def test_log_softmax(self):
helper_test_op([(45,65)], torch.nn.LogSoftmax(dim=1), Tensor.log_softmax, atol=1e-7, grad_atol=1e-7)
helper_test_op([(45)], torch.nn.LogSoftmax(dim=0), Tensor.log_softmax, atol=1e-7, grad_atol=1e-7)
helper_test_op([()], torch.nn.LogSoftmax(dim=0), Tensor.log_softmax, atol=1e-7, grad_atol=1e-7)
helper_test_op([()], torch.nn.LogSoftmax(dim=-1), Tensor.log_softmax, atol=1e-7, grad_atol=1e-7)
def test_log_softmax_other_axis(self):
helper_test_op([(10,10,10)], lambda x: x.log_softmax(0), atol=1e-7, grad_atol=1e-7)
helper_test_op([(10,10,10)], lambda x: x.log_softmax(1), atol=1e-7, grad_atol=1e-7)
helper_test_op([(10,10,10)], lambda x: x.log_softmax(2), atol=1e-7, grad_atol=1e-7)
def test_logsumexp(self):
helper_test_op([(45,65)], lambda x: torch.logsumexp(x, dim=0), lambda x: x.logsumexp(0), atol=1e-7, grad_atol=1e-7)
helper_test_op([(45,65)], lambda x: torch.logsumexp(x, dim=0, keepdim=True), lambda x: x.logsumexp(0, True), atol=1e-7, grad_atol=1e-7)
helper_test_op([(45,65)], lambda x: torch.logsumexp(x, dim=1), lambda x: x.logsumexp(1), atol=1e-7, grad_atol=1e-7)
helper_test_op([(45)], lambda x: torch.logsumexp(x, dim=0), lambda x: x.logsumexp(0), atol=1e-7, grad_atol=1e-7)
helper_test_op([()], lambda x: torch.logsumexp(x, dim=0), lambda x: x.logsumexp(0), atol=1e-7, grad_atol=1e-7)
helper_test_op([()], lambda x: torch.logsumexp(x, dim=-1), lambda x: x.logsumexp(-1), atol=1e-7, grad_atol=1e-7)
def test_sinh(self):
helper_test_op([(45,65)], lambda x: x.sinh(), grad_atol=1e-6)
# TODO: backward nan instead of inf
helper_test_op([(45,65)], lambda x: x.sinh(), grad_atol=1e-6, low=-300, high=-297, forward_only=True)
helper_test_op([(45,65)], lambda x: x.sinh(), grad_atol=1e-6, low=300, high=303, forward_only=True)
def test_cosh(self):
helper_test_op([(45,65)], lambda x: x.cosh(), grad_atol=1e-6)
# TODO: backward nan instead of inf
helper_test_op([(45,65)], lambda x: x.cosh(), grad_atol=1e-6, low=-300, high=-297, forward_only=True)
helper_test_op([(45,65)], lambda x: x.cosh(), grad_atol=1e-6, low=300, high=303, forward_only=True)
def test_tanh(self):
helper_test_op([(45,65)], lambda x: x.tanh(), grad_atol=1e-6)
helper_test_op([(45,65)], lambda x: x.tanh(), grad_atol=1e-6, low=-300, high=-297)
helper_test_op([(45,65)], lambda x: x.tanh(), grad_atol=1e-6, low=300, high=303)
def test_hardtanh(self):
for val in range(10, 30, 5):
helper_test_op([(45,65)], lambda x: torch.nn.functional.hardtanh(x, -val, val), lambda x: x.hardtanh(-val, val), grad_atol=1e-6)
helper_test_op([()], lambda x: torch.nn.functional.hardtanh(x, -val, val), lambda x: x.hardtanh(-val, val), grad_atol=1e-6)
def test_asinh(self):
helper_test_op([(45,65)], lambda x: x.asinh(), grad_atol=1e-6)
# NOTE: this one has larger atol
helper_test_op([(45,65)], lambda x: x.asinh(), atol=1e-2, grad_atol=1e-6, low=-300, high=-297)
helper_test_op([(45,65)], lambda x: x.asinh(), grad_atol=1e-6, low=300, high=303)
def test_acosh(self):
helper_test_op([(45,65)], lambda x: x.acosh(), grad_atol=1e-6)
helper_test_op([(45,65)], lambda x: x.acosh(), grad_atol=1e-6, low=-300, high=-297)
helper_test_op([(45,65)], lambda x: x.acosh(), grad_atol=1e-6, low=300, high=303)
def test_atanh(self):
helper_test_op([(45,65)], lambda x: x.atanh(), grad_atol=1e-6)
helper_test_op([(45,65)], lambda x: x.atanh(), grad_atol=1e-6, low=-300, high=-297)
helper_test_op([(45,65)], lambda x: x.atanh(), grad_atol=1e-6, low=300, high=303)
def test_topo_sort(self):
helper_test_op([(45,65)], lambda x: (x+x)*x, grad_atol=1e-6)
helper_test_op([()], lambda x: (x+x)*x, grad_atol=1e-6)
def test_flip_eye_crash(self):
helper_test_op([], lambda: (torch.eye(10)@torch.eye(10).flip(0)),
lambda: (Tensor.eye(10)@Tensor.eye(10).flip(0)), forward_only=True)
def test_broadcast_full(self):
for torch_op, tinygrad_op in [(torch.add, Tensor.add), (torch.sub, Tensor.sub), (torch.mul, Tensor.mul),
(torch.div, Tensor.div), (torch.pow, Tensor.pow)]:
for shapes in [((5,13,24,16), (5,1,24,1)), ((1,3,1,7,1), (2,1,5,1,8))]:
with self.subTest(op=torch_op.__name__, shapes=shapes):
if tinygrad_op != Tensor.pow:
helper_test_op(shapes, torch_op, tinygrad_op)
else:
helper_test_op(shapes, torch_op, tinygrad_op, low=0, high=3)
def test_broadcast_simple(self):
helper_test_op([(45,65), (45,1)], lambda x,y: x/y)
helper_test_op([(45,65), ()], lambda x,y: x/y)
def test_broadcast_partial(self):
for torch_op, tinygrad_op in [(torch.add, Tensor.add), (torch.sub, Tensor.sub), (torch.mul, Tensor.mul),
(torch.div, Tensor.div), (torch.pow, Tensor.pow)]:
for shapes in [((1,32,32,32), (1,32,1,1)), ((5,13,24,16,2), (1,13,24,1,1)),
((4,1), (4,5)), ((1,4), (5,4))]:
with self.subTest(op=torch_op.__name__, shapes=shapes):
# NOTE: ANE backwards?
if tinygrad_op != Tensor.pow:
helper_test_op(shapes, torch_op, tinygrad_op)
else:
helper_test_op(shapes, torch_op, tinygrad_op, low=0, high=3)
def test_slice_in_bounds_1dim(self):
helper_test_op([(3)], lambda x: x[1:3])
helper_test_op([(3)], lambda x: x[0:2])
helper_test_op([(3)], lambda x: x[-2:2])
def test_slice_on_0dim_tensor(self):
helper_test_op([()], lambda x: x[None])
with self.assertRaises(IndexError):
a = Tensor(3.14)
a[0]
def test_slice_int_indexing(self):
helper_test_op([(3)], lambda x: x[0])
helper_test_op([(3)], lambda x: x[2])
helper_test_op([(3)], lambda x: x[-1])
helper_test_op([(3)], lambda x: x[-3])
helper_test_op([(10,10)], lambda x: x[1])
helper_test_op([(3,3,3)], lambda x: x[1,1,1])
def test_slice_in_bounds_multidim(self):
helper_test_op([(3,3,3)], lambda x: x[1:2])
helper_test_op([(3,3,3)], lambda x: x[1:2, 2])
helper_test_op([(3,3,3)], lambda x: x[1:2, 1:2])
helper_test_op([(3,3,3)], lambda x: x[1:2, 1:2, 0:-1])
def test_slice_with_none(self):
helper_test_op([(3,3,3)], lambda x: x[None])
helper_test_op([(3,3,3)], lambda x: x[1:2, None])
helper_test_op([(3,3,3)], lambda x: x[1:2, None, 1:2])
helper_test_op([(3,3,3)], lambda x: x[1:2, 1:2, None, -1])
helper_test_op([(3,3,3)], lambda x: x[None, None, 1, None, 2, 0:2])
def test_slice_with_const_tensor(self):
t = Tensor.zeros(1, dtype=dtypes.int)
helper_test_op([(3,3,3)], lambda x: x[:, [0], :], lambda x: x[:, t, :])
helper_test_op([(3,3,3)], lambda x: x[:, [0], :], lambda x: x[:, t.contiguous(), :])
def test_slice_one_endpoint_out_of_bounds(self):
helper_test_op([(3,3,3)], lambda x: x[0:4])
helper_test_op([(3,3,3)], lambda x: x[-6:4])
helper_test_op([(3,3,3)], lambda x: x[1:50])
helper_test_op([(3,3,3)], lambda x: x[1:50, 1:2, -1])
def test_slice_stride_gt_one(self):
helper_test_op([(7,5,10)], lambda x: x[::2, ::3, ::4])
helper_test_op([(7,5,10)], lambda x: x[1:5:2, ::3, ::4])
helper_test_op([(7,5,10)], lambda x: x[1:5:2, 3, ::4])
helper_test_op([(7,5,10)], lambda x: x[1:5:2, None, None, 3, None, ::4])
def test_slice_negative_strides(self):
# Torch doesn't support slicing with negative steps
a = np.random.randn(10, 10, 10).astype(np.float32)
t = Tensor(a)
np.testing.assert_allclose(a[::-1], t[::-1].numpy())
np.testing.assert_allclose(a[::-2], t[::-2].numpy())
np.testing.assert_allclose(a[:, 2:0:-1], t[:, 2:0:-1].numpy())
np.testing.assert_allclose(a[:, 2:0:-1, 3:1:-2], t[:, 2:0:-1, 3:1:-2].numpy())
np.testing.assert_allclose(a[4:0:-3, 2:0:-1, -1:-5:-2], t[4:0:-3, 2:0:-1, -1:-5:-2].numpy())
np.testing.assert_allclose(a[2:5:-1, :, :], t[2:5:-1, :, :].numpy()) # shape = (0, 10, 10)
np.testing.assert_allclose(a[:, 2:5:-1, :], t[:, 2:5:-1, :].numpy()) # shape = (0, 10, 10)
np.testing.assert_allclose(a[:, :, 2:5:-1], t[:, :, 2:5:-1].numpy()) # shape = (0, 10, 10)
def test_slice_both_endpoints_out_of_bounds(self):
helper_test_op([(3,3,3)], lambda x: x[5:10])
helper_test_op([(3,3,3)], lambda x: x[-15:-7])
def test_slice_start_gt_end(self):
helper_test_op([(3,3,3)], lambda x: x[-2:2])
helper_test_op([(3,3,3)], lambda x: x[-2:-5])
def test_slice_empty(self):
helper_test_op([(10,10)], lambda x: x[1:1])
def test_slice_zero_in_shape(self):
helper_test_op([(10,10)], lambda x: x[1:1]) # x.shape = (0, 10)
helper_test_op([(3,3,3)], lambda x: x[-2:-5]) # x.shape = (0, 3, 3)
def test_slice_errors(self):
a = Tensor.ones(4, 3)
b = Tensor(2)
with self.assertRaises(IndexError): a[1, 77, 77, 77] # IndexError: (finds too many indices before the out of bounds)