-
Notifications
You must be signed in to change notification settings - Fork 3.1k
/
Copy pathtest_jit.py
337 lines (291 loc) · 10.7 KB
/
test_jit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#!/usr/bin/env python
import unittest, functools
import numpy as np
from test.helpers import assert_jit_cache_len
from tinygrad.tensor import Tensor
from tinygrad.engine.jit import TinyJit
from tinygrad.device import Device
from tinygrad.helpers import CI
def _simple_test(add, extract=lambda x: x, N=10):
for _ in range(5):
a = Tensor.randn(N, N)
b = Tensor.randn(N, N)
c = add(a, b)
np.testing.assert_allclose(extract(c).numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(add, 1)
class TestJit(unittest.TestCase):
def test_simple_jit(self):
@TinyJit
def add(a, b): return (a+b).realize()
_simple_test(add)
def test_simple_jit_reset(self):
@TinyJit
def add(a, b): return (a+b).realize()
_simple_test(add)
add.reset()
_simple_test(add, N=20)
def test_simple_jit_norealize(self):
@TinyJit
def add(a, b): return (a+b)
_simple_test(add)
def test_simple_jit_norealize_list(self):
@TinyJit
def add(a, b): return [a+b]
_simple_test(add, extract=lambda x: x[0])
def test_simple_jit_norealize_dict(self):
@TinyJit
def add(a, b): return {"billy": a+b}
_simple_test(add, extract=lambda x: x["billy"])
def test_jit_multiple_outputs(self):
@TinyJit
def f(a, b): return (a+b).realize(), (a-b).realize(), (a*b).realize()
for _ in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
c, d, e = f(a, b)
np.testing.assert_allclose(c.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(d.numpy(), a.numpy()-b.numpy(), atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(e.numpy(), a.numpy()*b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(f, 3)
def test_nothing_jitted(self):
@TinyJit
def add(a, b): return None
with self.assertRaises(AssertionError):
for _ in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
add(a, b)
def test_jit_shape_mismatch(self):
@TinyJit
def add(a, b): return (a+b).realize()
for _ in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
add(a, b)
bad = Tensor.randn(20, 20)
with self.assertRaises(AssertionError):
add(a, bad)
def test_jit_shape_views_mismatch(self):
@TinyJit
def add(a): return (a+1).realize()
with self.assertRaises(AssertionError):
for i in range(1,5):
# a has an offset that the kernel doesn't know about
a = Tensor.randn(10, 10).realize()[:, i:i+2]
add(a)
def test_jit_duplicate_fail(self):
# the jit doesn't support duplicate arguments
@TinyJit
def add(a, b): return (a+b).realize()
a = Tensor.randn(10, 10)
with self.assertRaises(AssertionError):
add(a, a)
def test_kwargs_jit(self):
@TinyJit
def add_kwargs(first, second): return (first+second).realize()
for _ in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
c = add_kwargs(first=a, second=b)
np.testing.assert_allclose(c.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(add_kwargs, 1)
def test_reorder_kwargs_jit(self):
@TinyJit
def add_kwargs(first, second): return (first/second).realize()
for _ in range(2):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
c = add_kwargs(second=b, first=a)
np.testing.assert_allclose(c.numpy(), a.numpy()/b.numpy(), atol=1e-4, rtol=1e-5)
for _ in range(2):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
c = add_kwargs(first=a, second=b)
np.testing.assert_allclose(c.numpy(), a.numpy()/b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(add_kwargs, 1)
def test_array_jit(self):
@TinyJit
def add_array(a, arr): return (a+arr[0]).realize()
for i in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
a.realize(), b.realize()
c = add_array(a, [b])
if i >= 2:
# should fail once jitted since jit can't handle arrays
np.testing.assert_allclose(np.any(np.not_equal(c.numpy(),a.numpy()+b.numpy())), True, atol=1e-4, rtol=1e-5)
else:
np.testing.assert_allclose(c.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(add_array, 1)
def test_jit_copyin(self):
@TinyJit
def f(a):
return a + Tensor([1,2,3])
for _ in range(5):
b = Tensor.randn(3)
c = f(b)
np.testing.assert_allclose(c.numpy(), b.numpy()+[1,2,3], atol=1e-4, rtol=1e-5)
def test_method_jit(self):
class Fun:
def __init__(self):
self.a = Tensor.randn(10, 10)
@TinyJit
def __call__(self, b:Tensor) -> Tensor:
return (self.a+b).realize()
fun = Fun()
for _ in range(5):
b = Tensor.randn(10, 10)
c = fun(b)
np.testing.assert_allclose(c.numpy(), fun.a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(fun.__call__.func.__self__, 1)
def test_jit_size1_input(self):
@TinyJit
def f(a, b): return (a+b).realize()
a = Tensor([1, 2, 3])
for i in range(5):
np.testing.assert_allclose(f(a, Tensor([i])).numpy(), (a+i).numpy(), atol=1e-4, rtol=1e-5)
assert_jit_cache_len(f, 1)
def test_jit_output_non_tensor_fail(self):
@TinyJit
def f(a, b, i): return (a+b).realize(), i
output1, output2 = [], []
expect1, expect2 = [], []
for i in range(5):
a = Tensor.randn(10, 10)
b = Tensor.randn(10, 10)
o1, o2 = f(a, b, i)
output1.append(o1.numpy().copy())
output2.append(o2)
expect1.append(a.numpy().copy()+b.numpy().copy())
expect2.append(i)
np.testing.assert_allclose(output1, expect1, atol=1e-4, rtol=1e-5)
# the jit only works with Tensor outputs
assert output2 != expect2
assert_jit_cache_len(f, 1)
def test_jit_random_regen(self):
def f(a, b):
rn = Tensor.randn(*a.shape)
return ((a+b)*rn).realize()
a = Tensor.randn(10, 10).realize() # realize these before resetting the random seed
b = Tensor.randn(10, 10).realize()
Tensor.manual_seed(1234)
jf = TinyJit(f)
res = set()
for _ in range(5):
o1 = jf(a, b)
res.add(o1.numpy()[0][0])
assert len(res) == 5, "All values should be different, rand works in jit."
Tensor.manual_seed(1234)
jf2 = TinyJit(f)
res2 = set()
for _ in range(5):
o1 = jf2(a, b)
res2.add(o1.numpy()[0][0])
assert len(res2) == 5, "All values should be different, rand works in jit."
assert res == res2, "Jit rand is not reproducible with the same seed"
Tensor.manual_seed(3421)
jf3 = TinyJit(f)
res3 = set()
for _ in range(5):
o1 = jf3(a, b)
res3.add(o1.numpy()[0][0])
assert len(res3) == 5, "All values should be different, rand works in jit."
assert res3 != res2, "Jit rand is diff with diff seeds"
def test_jit_realization_and_sampling(self):
w = Tensor.eye(5)
@TinyJit
def foo (x): return w.dot(x).realize()
arg = [
Tensor([1,2,3,4,5]),
Tensor([1,3,3,4,6]),
Tensor([1,2,5,4,7]),
Tensor([0,2,3,1,0]),
]
Y = [foo(e).numpy() for e in arg]
foo(Tensor([7,7,7,7,7]))
want = [[1., 2., 3., 4., 5.],
[1., 3., 3., 4., 6.],
[1., 2., 5., 4., 7.],
[0., 2., 3., 1., 0.]]
np.testing.assert_allclose(want, Y)
def test_jit_buffer_behavior(self):
@TinyJit
def foo(x) -> Tensor: return x.sum().realize()
result_1 = foo(Tensor([1] * 2))
result_2 = foo(Tensor([2] * 2))
result_3 = foo(Tensor([3] * 2))
# expect the buffer to share underlying buffer
np.testing.assert_allclose(result_1.numpy(), [2], atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(result_2.numpy(), [6], atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(result_3.numpy(), [6], atol=1e-4, rtol=1e-5)
@unittest.skipIf(CI and Device.DEFAULT=="METAL", "no ICB in CI, creation of graph fails")
def test_jit_batch_split(self):
if Device[Device.DEFAULT].graph is None: raise unittest.SkipTest("only test graphs")
# Create long jit with 83 kernels.
def f(a, b, c, d, e):
for _ in range(80):
a = (a+b).realize()
y = (a*c).realize()
z = (y*d).realize()
w = (z*e)
return w.realize()
a = Tensor.randn(10, 10).realize()
b = Tensor.randn(10, 10).realize()
c = Tensor.randn(10, 10).realize()
d = Tensor.randn(10, 10).realize()
e = Tensor.randn(10, 10).realize()
jf = TinyJit(f)
prev = None
for _ in range(5):
o = jf(a, b, c, d, e).numpy()
if prev is not None: np.testing.assert_allclose(o, prev, atol=1e-4, rtol=1e-5)
prev = o
graph_t = Device[Device.DEFAULT].graph.func if isinstance(Device[Device.DEFAULT].graph, functools.partial) else Device[Device.DEFAULT].graph
# Checking that 2 graphs are inited.
assert isinstance(jf.jit_cache[0].prg, graph_t)
assert isinstance(jf.jit_cache[1].prg, graph_t)
def test_jit_const_inputs(self):
@TinyJit
def g(x,y,z): return (x+y+z).realize()
for i in range(5):
np.testing.assert_equal(g(Tensor([i]*3), Tensor.ones(3), Tensor.zeros(3)).numpy(), np.array([i+1]*3))
@unittest.skipIf(CI and Device.DEFAULT in {"GPU", "CUDA", "METAL", "HSA", "NV", "AMD"}, "no GPU CI")
def test_jitted_transfers(self):
d0, d1 = f"{Device.DEFAULT}:0", f"{Device.DEFAULT}:1"
def f(a, b):
x = a.to(d1)
y = b.to(d1)
return x.realize(), y.realize()
jf = TinyJit(f)
for _ in range(5):
a = Tensor.randn(10, 10, device=d0).realize()
b = Tensor.randn(10, 10, device=d0).realize()
xc, yc = jf(a, b)
np.testing.assert_allclose(a.numpy(), xc.numpy(), atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(b.numpy(), yc.numpy(), atol=1e-4, rtol=1e-5)
@unittest.skip("Pending multioutput implementation #3607")
class TestMultioutputJit(unittest.TestCase):
def _test(self, f):
for _ in range(5):
a, b = Tensor.randn(10, 10), Tensor.randn(10, 10)
out0, out1, out2 = f(a, b)
np.testing.assert_allclose(out0.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(out1.numpy(), a.numpy()-b.numpy(), atol=1e-4, rtol=1e-5)
np.testing.assert_allclose(out2.numpy(), a.numpy()*b.numpy(), atol=1e-4, rtol=1e-5)
def test_jit_multioutput_realize(self):
@TinyJit
def fxn(a, b): return (a+b).realize(), (a-b).realize(), (a*b).realize()
self._test(fxn)
assert_jit_cache_len(fxn, 3)
def test_jit_multioutput_norealize(self):
@TinyJit
def fxn(a, b): return a+b, a-b, a*b
self._test(fxn)
assert_jit_cache_len(fxn, 1)
def test_jit_multioutput_mix(self):
@TinyJit
def fxn(a, b): return a+b, a-b, (a*b).realize()
self._test(fxn)
assert_jit_cache_len(fxn, 2)
if __name__ == '__main__':
unittest.main()